• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Chemical Mechanical Polishing of Glass Substrate with α-Alumina-g-Polystyrene Sulfonic Acid Composite Abrasive

    2010-03-01 01:47:24LEIHongBUNaijingZHANGZefangandCHENRuling
    關(guān)鍵詞:根本性興盛基礎(chǔ)性

    LEI Hong, BU Naijing, ZHANG Zefang, and CHEN Ruling

    Research Center of Nano-science and Nano-technology, Shanghai University, Shanghai 200444, China

    1 Introduction

    Chemical mechanical polishing(CMP) as the only technology to provide global planarization has been widely used in the manufacturing of semiconductor and digital compact disc(CD) glass substrate[1–3]. In CMP, abrasive is one of key influencing factors on the polished surface quality. The size and distribution, dispersibility, hardness and species of abrasive are crucial for a desired CMP performances[4–5]. Large particles resulted from particles agglomeration in CMP slurries, are believed to be main factor to cause polishing scratch and the increasing of surface roughness[6], and hence must be eliminated.

    In CMP slurries, two types of abrasives are adopted: the traditional inorganic particles and the composite particles[6].Traditional inorganic abrasives, such as silica[2–3],alumina[8–9], ceria[10–11], have been widely studied and used in the commercial slurries, but just one kind of inorganic abrasives used in slurries often leads to undesired CMP performance. It has been proved that the nanoparticle impacts during CMP can lead to nano-deformation or damages in sub-surface layer of the polished surfaces[12–15].Recently, with the increasing demand of improving the polishing performances while minimizing roughness and defects of the polished surface, composite particles as abrasives in slurry have been paid much attentions[7,16–24].It is thought that the coating on the surface of particles with harder substance can improve the removal rate while keeping the density of defects constant, however the hard particles coated with a softer material can reduce CMP defects[17]. YANO, et al[18], developed a kind of slurry with inorganic/resin abrasive for the Al/low-k damascene wiring CMP. The slurry resulted in less scratching and better planarity. In SiO2CMP, it was found that composite abrasive slurry exhibited the reduction of the dishing and erosion depth, which was reduced to less than 80 nm after the first step CMP and less than 70 nm after the second step CMP[19]. KAWAHASHI, et al[20], presented composite particles consisting of polymer core covered with inorganic composition such as SiO2and Al2O3. The Cu-CMP slurry with these composite particles gave excellent dishing,erosion, and the over-polish-margin performances.Particularly these composite particles were useful to prevent increasing scratch on the tetraethyl orthosilicate and low-k dielectric materials surfaces in the second step CMP process[20]. Composite abrasives with polymer core and ceramic shell have been extensively published in Refs. [18, 21–22].

    At present, α-Al2O3particles as a kind of abrasive has been widely used in CMP slurries[8–9], but its high hardness and poor dispersion stability often lead to more surface defects.

    In the present paper, a novel α-alumina-g-polystyrene sulfonic acid (α-Al2O3-g-PSS) composite abrasive was prepared by surface graft polymerization in section 2.Subsequently, in section 3, its composition, structure and morphology were characterized and its CMP performances on glass substrate were investigated, followed by conclusions.

    2 Experimental Methods

    2.1 Preparation of α-Al2O3-g-PSS composite abrasive

    2.1.1 Silylation

    Prior to silylation, α-Al2O3powder was dried in an oven at 110 ℃ under vacuum for 12 h to get rid of the absorbed moisture. Subsequently, 50 g dried α-Al2O3powder (crystal particle diameter of about 50 nm) and 25 g KH570 silane couple agent (γ-methacryloxypropyl trimethoxy silane) in 500 mL anhydrous ethanol were charged into a 1 000 mL three-necked flask equipped with a reflux condenser. After dispersed with ultrasonic for 0.5 h, the mixture was refluxed at the boiling temperature of ethanol for 5 h under continuously stirring. Then the mixture was separated by centrifugation and the precipitate was washed by anhydrous ethanol for 6 times to remove excess KH570. In the end, the precipitate was dried at 80 ℃ in a vacuum oven for 24 h to remove the remaining solvent.

    2.1.2 Graft polymerization

    The graft polymerization reactions for styrene monomer were performed in a flask equipped with a condenser at 80 ℃ under vacuum. 25 g of the above prepared α-Al2O3powder, 8 mL 3% polyvinyl alcohol(PVA), and 492 mL deionized(DI) water were added into the flask. The mixture was dispersed with ultrasonic for half an hour. After deoxygenating by taking out air with a vacuum pump and filling nitrogen gas alternately for four times, the flask containing the mixture was heated up to 80 ℃. Then,0.25 g benzoyl peroxide(BPO) as initiator and 25 g styrene as monomer were added simultaneously into the mixture.The polymerization reaction would last 5 h under the protection of nitrogen gas and continuously stirring at the temperature of 80 ℃. Afterwards, the resultant suspension was treated by vacuum filtration, the precipitate was purified in a centrifuge by dispersing in toluene and following centrifugal separation for six times to eliminate homopolymer. Finally, the precipitate was dried under vacuum at 50℃ for 12 h to obtain α-alumina-gpolystyrene(α-Al2O3-g-PS) powder with 27.6% grafting ratio. By adopting different weight percent of styrene versus α-Al2O3, α-Al2O3-g-PS composite particles with different grafting ratio were prepared.

    2.1.3 Sulfonation

    3 g Ag2SO4and 500 mL sulfuric acid were charged into a 1 000 mL three-necked flask, and then heated up to 98?99 ℃. Subsequently, the prepared α-Al2O3-g-PS powder was added into it slowly. The reaction would last 4 h under the protection of drier and continuously stirring at the above temperature. After the solution cooled to room temperature, it was poured into DI water under incessant stirring to precipitate, and the precipitate was washed with DI water for six times to remove remanent sulfuric acid.Finally, the precipitate was dried under vacuum at 80 ℃to obtain α-Al2O3-g-PSS powder.

    2.1.4 Preparation of the slurry

    2.5 wt.% α-Al2O3-g-PSS particles and 1 wt.%polyoxyethylene carboxyl acid as dispersant were added into DI water in a container under continuously stirring.Then the mixture was milled for 2 h in a vibrator containing ZrO2balls as abrasives. Finally, the mixture was filtrated with a 30.8 μm pore strainer to obtain slurry containing α-Al2O3-g-PSS abrasive.

    2.2 Characterization of α-Al2O3-g-PSS abrasive

    The purifiedα-Al2O3-g-PSS composite particle was characterized by Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS), time-offlight secondary ion mass spectroscopy(TOF-SIMS), and scanning electron microscopy(SEM), respectively.

    FTIR spectra were obtained on a Nicolet AVATAR 370 FTIR spectrometer. Samples for measurements were mixed with carefully dried KBr solid, and the solid mixture was then made into pellets using a 13 mm die and a hydraulic press.

    從提出增強(qiáng)文化自信、價(jià)值觀自信〔2〕到將文化自信同道路自信、理論自信和制度自信并列構(gòu)成“四個(gè)自信”,〔3〕再到十九大報(bào)告中強(qiáng)調(diào)文化自信基礎(chǔ)性、根本性的地位和作用,指出文化自信是更基本、更深沉、更持久的力量?!?〕并將文化自信提升到國(guó)家發(fā)展戰(zhàn)略的高度,明確指出堅(jiān)定文化自信,推動(dòng)社會(huì)主義文化繁榮興盛?!?〕在習(xí)近平總書(shū)記的講話中,能夠感受到他對(duì)中華文化的自信與堅(jiān)定,感受到他對(duì)人民堅(jiān)定文化自信的期望?,F(xiàn)有研究成果表明,文化自信的提出具有歷史必然性,同時(shí)具有深刻的現(xiàn)實(shí)依據(jù)。

    XPS spectrum was obtained on a KRATOS XSAM 800 electron spectrometer by using the Mg Kα line with pass energy of 12.5 kV×18 mA. The binding energy of C1s(284.6 eV) was used as reference.

    TOF-SIMS analyses were performed with a Physical Electronics TRIFT II instrument using a pulsed gallium ion beam with the energy of 15 kV. The analytical region was 200 μm×200 μm, and post acceleration was 5 kV/5 kV(+/?).

    SEM analyses were accomplished by using a JEOL JSM-6700F field emission scanning electron microscope with voltage of 10 kV.

    The graft ratio was determined by calcination under 700 ℃ for 6 h, grafted organic compounds could be decomposed into gases (CO2, H2O, etc) and volatilized away while inorganic α-Al2O3particles remained and didn't change. The weight loss after calcining divided by initial sample weight gave graft ratio.

    2.3 Polishing tests

    Polishing tests were conducted with a SPEEDFAM-16B-4M CMP equipment (SPEEDFAM Co. LTD) by using the following polishing conditions: down force of 7 kPa,rotating speed of 23 r/min and slurry supplying rate of 1 L/min. Workpieces were φ170 mm sodium-calcium glass substrates with an average roughness (Ra) of about 520 nm. The polishing pad was a Rodel porous polyurethane pad.

    After being polished, the substrates were washed with ultrasonic in a cleaning solution containing 0.5 wt.%surfactant in DI water. Finally, they were dried by a multi-functional drying system.

    2.4 Examination of the polished surfaces

    The polished surface roughness (Ra) was measured to evaluate the polishing effects of different slurries. Rawas measured by using a Wyko optical profiler (WYKO NT 9800, VEECO) with scan area of 480 μm×736 μm. The polished surface topography was measured by using a DI D-300 atomic force microscope (Digital Instrument Corp.,USA) with the resolution of 0.01 nm in vertical direction and 0.1 nm in horizontal direction. The AFM operating mode was tapping mode with scan area of 5 μm×5 μm.

    3 Results and Discussions

    3.1 Structure and dispersibility of α-Al2O3-g-PSS composite abrasive

    Fig. 1. FTIR spectra of α-Al2O3 particles before and after modification

    Further, XPS and TOF-SIMS analyses were conducted to confirm the structure of α-Al2O3-g-PSS particles. In XPS analysis, it is found that element S appears on the surface of the composite particles. As shown in Fig. 2, the binding energy of S2p occurs at 175.3 eV, which should be attributed to the sulfur in sulfonated polystyrene.TOF-SIMS is an effective means for element analysis because of its high sensitivity, mass and space resolution[25].Fig. 3 shows the TOF-SIMS analysis of the composite particles. Horizontal axis is ion mass, and vertical axis is number of ions counted. It is found that the peaks of S and Al ions appear in the anions and cations spectra,respectively. The introduction of element S on the alumina surface indicates that sulfonated polystyrene was successfully grafted on the surface of α-Al2O3particles,which is consistent with the result of XPS. Based on the above results, the structure of the prepared composite particles may be deduced: a core/shell structure with α-Al2O3as core and sulfonated polystyrene chain as shell.

    Fig. 2. S2p XPS spectrum of α-Al2O3-g-PSS particles with graft ratio of 11.4 wt.%

    Fig. 3. TOF-SIMS spectra of α-Al2O3-g-PSS particles with graft ratio of 11.4 wt.%

    In order to analyze the dispersibility of alumina particles before and after surface modification, the morphology of the α-Al2O3particles before and after surface modification was analyzed by SEM, and the results are shown in Fig. 4.It is found that the α-Al2O3-PSS composite particles have better dispersibility while obvious agglomeration is observed for pure α-Al2O3particles. The improvement of the dispersibility of the composite particles can be attributed to the presence of polystyrene sulfonic acid chain.The water-solubility of sulfonated polystyrene chain may endue the composite particles with better hydrophilicity and solvability in aqueous medium, and the sulfonated polystyrene long chain can provide the composite particles with stronger steric hindrance effect, which in turn prevents the agglomeration among the α-Al2O3particles. In order to investigate the dispersion mechanism, zeta potential was measured. As shown in Table 1, negative surface charge of alumina particles was increased through grafting with polystyrene sulfonic acid(PSS) chain. The higher zeta potential is, the better thermodynamic dispersion stability will be. In other words, the thermodynamic dispersion stability of alumina particles was improved by coating PSS on the surfaces. The increasing of zeta potential may account for why the α-Al2O3-PSS particles have better dispersibility than pure α-Al2O3particles.

    Fig. 4. SEM images of α-Al2O3 particles before and after grafting

    Table 1. Zeta potential of Al2O3-g-PSS composite abrasive with different grafting ratio

    3.2 CMP behavior of α-Al2O3-g-PSS composite abrasive

    Fig. 5 shows the influence of polishing time on Rawith α-Al2O3-PSS composite abrasive of 27.6 wt.% grafting ratio. With the increase of polishing time, the number of rough peaks on the surface decreases, which leads to the surface roughness to decrease. The surface average roughness shows almost no change when polishing time is from 60 min to 180 min. In other words, polishing time of 60 min is enough for glass polishing with the prepared abrasive. Prolonging the polishing time cannot improve surface quality any more.

    Fig. 5. Influence of polishing time on Ra(measured by WYKO profiler)

    Table 2 shows the effect of grafting ratio on Raof the polished surface (polishing time is 60 min). It is indicated that the prepared α-Al2O3-g-PSS abrasives give lower Ra values than pure α-Al2O3abrasive. And with the increasing of grafting ratio, the Ravalue decreases. In other words, the high grafting ratio helps to reach the high surface planarization.

    Table 2. Effect of the grafted PSS content on Ra(measured by WYKO profiler)

    Further, in order to investigate the difference in polishing performances between the prepared α-Al2O3-g-PSS abrasive and pure α-Al2O3abrasive, the topographical micrographs of polished glass substrate surfaces were analyzed by AFM, and the result is shown in Fig. 6. By comparison with pure α-Al2O3abrasive, the prepared α-Al2O3-g-PSS core-shell abrasive gives lower topographical variations as well as less and shallower scratches.And it is also found that the prepared α-Al2O3-g-PSS core-shell abrasive gives Raof 0.583 nm while pure α-Al2O3abrasive gives Raof 0.835 nm. The lower Ravalue means the higher surface planarization. In other words, the prepared α-Al2O3-g-PSS abrasive possesses higher surface planarization than pure alumina abrasive.

    Fig. 6. Surface profiles of glass substrates polished in slurries containing different abrasives

    The improvement in CMP performances of the α-Al2O3-g-PSS abrasive may be attributed to its core-shell structure. The grafted polystyrene sulfonic acid chain as shell on the hard α-Al2O3core is softer than α-Al2O3substrate, which can reduce the hardness of α-Al2O3particles and smooth the appearance of sharp particles.Thus polystyrene sulfonic acid shell may behave as a cushion during CMP, which can decrease the hard impacts and excessive mechanical damage caused by α-Al2O3particles, and accordingly the scratching level and surface roughness were reduced.

    In addition, through the grafting of water-soluble polystyrene sulfonic acid chain on the α-Al2O3surface, the dispersibility of α-Al2O3particles in aqueous medium was improved and large particles were eliminated. The elimination of the agglomeration of α-Al2O3particles may in turn lead to the reduction of surface scratch and the improvement of surface planarization.

    4 Conclusions

    (1) Novel α-Al2O3-g-PSS core-shell abrasive was prepared via a three-step process: surface activation,followed by graft polymerization and sulfonation,respectively.

    (2) FTIR, XPS, TOF-SIMS and SEM analyses indicate that modified α-Al2O3abrasive has better dispersion stability than pure α-Al2O3.

    (3) The slurry containing α-Al2O3-g-PSS composition abrasive exhibits better surface planarization and less scratch in the CMP of glass substrate surface. The improvement of surface qualities may be attributed to the cushioning effect of its core-shell structure and the elimination of the agglomeration among the α-Al2O3particles.

    [1] PATRICK W J, GUTHRIE W L, STANDLEY C L. Application of chemical mechanical polishing to the fabrication of VLSI circuit interconnections[J]. Journal of the Electrochemical Society, 1991,138(6): 1 778–1 784.

    [2] LEI Hong, LUO Jianbin. CMP of hard disk substrate using a colloidal SiO2slurry: preliminary experimental investigation[J].Wear, 2004, 257(5–6): 461–470.

    [3] LEI Hong, ZHANG Pengzhen, LU Haishen. Sub-nanometer precision polishing of glass substrate with a colloidal SiO2slurry[J].Lubrication Engineering, 2006, 1(1): 31–34. (in Chinese)

    [4] SOROOSHIAN A, ASHWANI R, CHOI H K. Effect of particle interaction on agglomeration of silica-based CMP slurries[C]//Materials Research Society Symposium Proceedings, San Francisco,CA, United States, April 13–15, 2004: 125–131.

    [5] ZHOU Chunhong, SHAN Lei, HIGHT R J, et al. Influence of colloidal abrasive size on material removal rate and surface finish in SiO2chemical mechanical polishing[J]. Tribology Transactions,2002, 45(2): 232–238.

    [6] BASIM G B, ADLER J J, MAHAJAN U. Effect of particle size of chemical mechanical polishing slurries for enhanced polishing with minimal defects[J]. Journal of the Electrochemical Society, 2000,147(9): 3 523–3 528.

    [7] LEI Hong, ZHANG Pengzhen. Preparation of alumina/silica core-shell abrasives and their CMP behavior[J]. Applied Surface Science, 2007, 253(21): 8 754–8 761.

    [8] LEI Hong, LUO Jianbin, LU XinChun. Two-step chemicalmechanical polishing of rigid disk substrate to get atom-scale planarization surface[J]. Chinese Journal of Mechanical Engineering, 2006, 19(4): 496–499.

    [9] LEI Hong, CHU Yuliang, TU Xifu. Preparation of ultra-fined Al2O3slurry and its polishing properties on disk CMP[J]. Journal of Functional Materials, 2005, 36(9): 1 425–1 428. (in Chinese)

    [10] ZHANG Pengzhen, LEI Hong, ZHANG Jianping. Preparation of nano-sized CeO2and its polishing performances[J]. Optical Technique, 2006, 32(5): 682–684. (in Chinese)

    [11] FENG Xiandong, HER Y S, ZHANG W L, et al. CeO2particles for chemical mechanical planarization[C]//Materials Research Society Symposium Proceedings, San Francisco, CA, United States, April 12–24, 2003, 767: 173–183.

    [12] XU Jin, LUO Jianbin, WANG Liangliang, et al. The crystallographic change in subsurface layer of the silicon single crystal polished by chemical mechanical polishing[J]. Tribology International, 2007, 40(2): 285–289.

    [13] XU Jin, LUO Jianbin, ZHANG ChaoHui, et al. Nano-deformation of a Ni-P coating surface after nanoparticle impacts[J]. Applied Surface Science, 2006, 252(16): 5 846–5 854.

    [14] XU Jin, LUO Jianbin, LU XinChun, et al. Atomic scale deformation in the solid surface induced by nanoparticle impacts[J].Nanotechnology, 2005, 16(6): 859–864.

    [15] LUO Jianbin, XU Xifu, JING Yang, et al. Movements and collisions of nanoparticles in two phase flow[C]//Proceedings of the World Tribology Congress III-2005, Washington D.C., United States, September 12–16, 2005: 355–356.

    [16] ZHANG Zefang, LEI Hong. Preparation of α-alumina/polymethacrylic acid composite abrasive and its CMP performance on glass substrate[J]. Microelectronic Engineering, 2008, 85(4):714–720.

    [17] SINGH R K, BAJAJ R. Advances in chemical-mechanical planarization[J]. MRS Bulletin, 2002, 27(10): 743.

    [18] YANO H, MATSUI Y, MINAMIHABA G, et al.High-performance CMP slurry with inorganic/resin abrasive for Al/low-k damascene[C]//Materials Research Society Symposium Proceedings, San Francisco, CA, United States, April 18–20, 2001,671: M2.4.1–M2.4.5.

    [19] SHIHO H, MANABE Y, KAWAHASHI N. Magnetic compounds as coatings on polymer particles and magnetic properties of the composite particles[J]. Journal of Material Chemistry, 2000, 10:333–336.

    [20] KAWAHASHI N, HATTORI M. An evaluation on the effects of newly designed abrasives in CMP slurry[C]//Materials Research Society Symposium Proceedings, San Francisco, CA, United States,April 18–20, 2001, 671: M2.2.1–M2.2.8.

    [21] SHIHO H, KAWAHASHI N. Iron compounds as coatings on polystyrene latex and as hollow spheres[J]. Journal of Colloid and Interface Science, 2000, 226(1): 91–97.

    [22] SILVIA A, VALENTINA T, KAREN M. Composite nanoparticles for defectivity reduction during CMP[C]//AIChE Annual Meeting,Conference Proceedings, Austin, TX, United States, November 7–12, 2004: 2 473–2 484.

    [23] LEI Hong, LU Haishen, LUO Jianbin, et al. Preparation of α-alumina-g-polyacrylamide composite abrasive and chemical mechanical polishing behavior[J]. Thin Solid Films, 2008, 516(10):3 005–3 008.

    [24] CECIL A COUTINHO A, SUBRHAMANYA R MUDHIVARTHI,et al. Novel ceria-polymer microcomposites for chemical mechanical polishing[J]. Applied Surface Science, 2008, 255(4):3 090–3 096.

    [25] DAUCHOT G, CASTRO E D, REPOUX M, et al. Application of TOF-SIMS surface analysis to tribochemistry in metal forming processes[J]. Wear, 2006, 260(3): 296–304.

    猜你喜歡
    根本性興盛基礎(chǔ)性
    河南心意拳系列之三:興盛周家口
    少林與太極(2023年7期)2023-08-25 05:28:48
    呂梁財(cái)政四項(xiàng)舉措支持基礎(chǔ)性養(yǎng)老服務(wù)發(fā)展
    黨的政治建設(shè)是黨的根本性建設(shè)
    活力(2019年17期)2019-11-26 00:41:52
    論教育在考據(jù)學(xué)興盛中的作用
    追尋音樂(lè)本色,讓活動(dòng)趨向有效
    揚(yáng)州雕版印刷技術(shù)的興盛和傳承
    淺析“禮”在儒家犯罪理論中的根本性地位
    中國(guó)移動(dòng)4G基礎(chǔ)性網(wǎng)絡(luò)部署策略研究
    絲綢之路“新北道”的開(kāi)通與興盛
    對(duì)外漢字教學(xué)的若干基礎(chǔ)性問(wèn)題
    色视频www国产| 国产毛片在线视频| 男的添女的下面高潮视频| 精品久久久久久电影网| 亚洲成人手机| 成年av动漫网址| 中国美白少妇内射xxxbb| 欧美日韩一区二区视频在线观看视频在线| 日日撸夜夜添| 精品国产国语对白av| 国产爽快片一区二区三区| 国产成人一区二区在线| 如日韩欧美国产精品一区二区三区 | 国产欧美日韩一区二区三区在线 | 欧美亚洲 丝袜 人妻 在线| 国产国拍精品亚洲av在线观看| 丰满少妇做爰视频| 国产日韩欧美亚洲二区| 波野结衣二区三区在线| 亚洲av.av天堂| 男男h啪啪无遮挡| 免费看日本二区| 欧美老熟妇乱子伦牲交| 国产精品成人在线| 成人18禁高潮啪啪吃奶动态图 | 嘟嘟电影网在线观看| 日韩在线高清观看一区二区三区| 亚洲av国产av综合av卡| 国产精品欧美亚洲77777| 一本一本综合久久| 国产在线男女| 久久免费观看电影| 亚洲精品国产成人久久av| 国产成人a∨麻豆精品| 黄色视频在线播放观看不卡| 大陆偷拍与自拍| 亚洲无线观看免费| 精品酒店卫生间| 女性生殖器流出的白浆| 女人久久www免费人成看片| 精品少妇黑人巨大在线播放| 免费av不卡在线播放| 国产成人精品久久久久久| 国产精品成人在线| 亚洲国产精品专区欧美| 久久人人爽人人爽人人片va| 天美传媒精品一区二区| 99久久综合免费| 男人爽女人下面视频在线观看| 99热这里只有是精品在线观看| 欧美成人午夜免费资源| 日韩一区二区视频免费看| 久久亚洲国产成人精品v| 黑丝袜美女国产一区| 日韩一本色道免费dvd| 黑人高潮一二区| 日本欧美国产在线视频| 18+在线观看网站| 日韩av在线免费看完整版不卡| xxx大片免费视频| 免费观看的影片在线观看| 91成人精品电影| 肉色欧美久久久久久久蜜桃| 成人特级av手机在线观看| 久久精品夜色国产| 伊人久久精品亚洲午夜| 精华霜和精华液先用哪个| 国产黄片视频在线免费观看| 国产精品久久久久久久久免| 老司机影院毛片| 极品人妻少妇av视频| 嫩草影院入口| 十八禁高潮呻吟视频 | 91在线精品国自产拍蜜月| 晚上一个人看的免费电影| 看免费成人av毛片| 久久久久久伊人网av| 一区二区三区乱码不卡18| 老女人水多毛片| 日本免费在线观看一区| 啦啦啦在线观看免费高清www| 女性被躁到高潮视频| 国产色婷婷99| 国产亚洲5aaaaa淫片| 丰满迷人的少妇在线观看| 三级国产精品片| 久久av网站| 午夜av观看不卡| 国产av国产精品国产| 纯流量卡能插随身wifi吗| 国产精品.久久久| 人人妻人人澡人人看| videossex国产| 国产日韩欧美亚洲二区| 男人舔奶头视频| 国产日韩一区二区三区精品不卡 | 成年av动漫网址| 老司机影院毛片| 一本—道久久a久久精品蜜桃钙片| 高清欧美精品videossex| 欧美一级a爱片免费观看看| 边亲边吃奶的免费视频| 久久青草综合色| 综合色丁香网| 国产69精品久久久久777片| 99国产精品免费福利视频| 婷婷色综合大香蕉| 我要看黄色一级片免费的| 国产免费又黄又爽又色| 中文欧美无线码| 日日摸夜夜添夜夜爱| 久久精品国产亚洲av天美| 人体艺术视频欧美日本| 成人特级av手机在线观看| 啦啦啦啦在线视频资源| 老司机影院毛片| 亚洲自偷自拍三级| 黄色视频在线播放观看不卡| 日韩熟女老妇一区二区性免费视频| 国产一区二区在线观看av| 我要看黄色一级片免费的| 久久这里有精品视频免费| 国产午夜精品久久久久久一区二区三区| 嫩草影院新地址| 国产91av在线免费观看| 三级国产精品欧美在线观看| 黄色怎么调成土黄色| 狠狠精品人妻久久久久久综合| 波野结衣二区三区在线| a级毛片免费高清观看在线播放| 日本黄色片子视频| 黄色配什么色好看| 色吧在线观看| 国产中年淑女户外野战色| 日本黄色日本黄色录像| 五月玫瑰六月丁香| 婷婷色av中文字幕| 寂寞人妻少妇视频99o| 欧美少妇被猛烈插入视频| 色视频www国产| av专区在线播放| 插逼视频在线观看| 国产精品秋霞免费鲁丝片| 一区二区三区乱码不卡18| 一级毛片aaaaaa免费看小| 国产亚洲5aaaaa淫片| 91久久精品国产一区二区成人| 中文字幕人妻熟人妻熟丝袜美| 亚洲av日韩在线播放| 国产高清国产精品国产三级| 亚洲图色成人| 男女边摸边吃奶| 精品少妇久久久久久888优播| 高清毛片免费看| 人妻夜夜爽99麻豆av| 一级毛片电影观看| 久久精品国产a三级三级三级| 久久人妻熟女aⅴ| 91久久精品国产一区二区三区| 如何舔出高潮| 国产免费一级a男人的天堂| 国产精品一区二区在线不卡| 久久精品国产a三级三级三级| 国产精品一区二区性色av| 亚洲国产精品一区三区| 久久久a久久爽久久v久久| 男女啪啪激烈高潮av片| 国产免费一区二区三区四区乱码| 亚洲精品一二三| 草草在线视频免费看| 在线 av 中文字幕| 大香蕉久久网| a级毛片免费高清观看在线播放| 亚洲av不卡在线观看| 高清午夜精品一区二区三区| 成人特级av手机在线观看| 亚洲精品国产av蜜桃| 在线天堂最新版资源| 成人影院久久| 久久久久久久亚洲中文字幕| av在线观看视频网站免费| 亚洲欧美日韩卡通动漫| 日韩欧美一区视频在线观看 | 亚洲国产精品国产精品| 精品人妻偷拍中文字幕| 精品少妇内射三级| 尾随美女入室| 高清av免费在线| 欧美成人精品欧美一级黄| 你懂的网址亚洲精品在线观看| 亚洲精品国产成人久久av| 亚洲精品乱码久久久v下载方式| 人妻夜夜爽99麻豆av| 日本爱情动作片www.在线观看| 中文在线观看免费www的网站| 午夜日本视频在线| 国模一区二区三区四区视频| 伊人久久精品亚洲午夜| 伦理电影免费视频| 丝袜喷水一区| 国内揄拍国产精品人妻在线| 在线免费观看不下载黄p国产| 亚洲国产日韩一区二区| 多毛熟女@视频| 亚洲国产成人一精品久久久| 久久热精品热| 嫩草影院入口| 99国产精品免费福利视频| 国产精品人妻久久久影院| 天堂俺去俺来也www色官网| 最近中文字幕2019免费版| 精品一区在线观看国产| 一级爰片在线观看| 成人黄色视频免费在线看| 亚洲情色 制服丝袜| 亚洲精品成人av观看孕妇| 男人狂女人下面高潮的视频| 久久av网站| av播播在线观看一区| 中国国产av一级| 国产精品一区www在线观看| 中文在线观看免费www的网站| 五月开心婷婷网| 免费观看a级毛片全部| 色视频在线一区二区三区| 99热6这里只有精品| 久热这里只有精品99| 欧美日韩一区二区视频在线观看视频在线| 又大又黄又爽视频免费| 午夜免费鲁丝| 国产视频内射| 午夜免费男女啪啪视频观看| 边亲边吃奶的免费视频| 国产欧美另类精品又又久久亚洲欧美| 久久 成人 亚洲| 国产无遮挡羞羞视频在线观看| 欧美人与善性xxx| 一本色道久久久久久精品综合| 国产亚洲一区二区精品| 国产永久视频网站| 人妻人人澡人人爽人人| 色5月婷婷丁香| 国产一区亚洲一区在线观看| 91精品国产九色| 天天操日日干夜夜撸| 中文字幕av电影在线播放| 精品一品国产午夜福利视频| 日韩三级伦理在线观看| 欧美日韩亚洲高清精品| 街头女战士在线观看网站| 夜夜骑夜夜射夜夜干| 欧美日本中文国产一区发布| www.色视频.com| 青春草国产在线视频| av.在线天堂| 国精品久久久久久国模美| 两个人免费观看高清视频 | 男女无遮挡免费网站观看| 国内揄拍国产精品人妻在线| 国产一级毛片在线| 男的添女的下面高潮视频| 一区二区三区免费毛片| 伦理电影大哥的女人| 男女国产视频网站| 老女人水多毛片| av福利片在线| 热re99久久精品国产66热6| 国产成人精品久久久久久| 国产免费视频播放在线视频| 欧美+日韩+精品| 国产成人精品婷婷| 亚洲av成人精品一区久久| 最黄视频免费看| 国产精品99久久99久久久不卡 | 亚洲自偷自拍三级| 精品亚洲成国产av| 亚洲综合色惰| 成年av动漫网址| 久久99蜜桃精品久久| 丝袜脚勾引网站| 国产高清不卡午夜福利| 亚洲欧美日韩卡通动漫| 伊人久久精品亚洲午夜| 人人妻人人添人人爽欧美一区卜| 日韩在线高清观看一区二区三区| 欧美另类一区| 又黄又爽又刺激的免费视频.| 亚洲欧洲国产日韩| 性色av一级| 精品人妻偷拍中文字幕| 中文乱码字字幕精品一区二区三区| 色94色欧美一区二区| 天美传媒精品一区二区| 在线精品无人区一区二区三| √禁漫天堂资源中文www| 观看免费一级毛片| 亚洲欧洲国产日韩| 人妻系列 视频| 免费观看av网站的网址| 插阴视频在线观看视频| 久久av网站| 3wmmmm亚洲av在线观看| 人人妻人人添人人爽欧美一区卜| 超碰97精品在线观看| 国产白丝娇喘喷水9色精品| 久久久久久伊人网av| 亚洲欧美清纯卡通| 日本91视频免费播放| 色94色欧美一区二区| 日韩不卡一区二区三区视频在线| 国产免费视频播放在线视频| 一个人免费看片子| 成人毛片a级毛片在线播放| 在线观看国产h片| 欧美日韩亚洲高清精品| 久久久久久久久久人人人人人人| 一级毛片 在线播放| 简卡轻食公司| 久久久欧美国产精品| 国产欧美日韩综合在线一区二区 | 国产乱人偷精品视频| 永久免费av网站大全| 搡老乐熟女国产| 欧美精品高潮呻吟av久久| 搡女人真爽免费视频火全软件| 热re99久久精品国产66热6| 日韩av在线免费看完整版不卡| 成年人午夜在线观看视频| 熟女电影av网| 免费观看的影片在线观看| 国产男女超爽视频在线观看| 18禁在线无遮挡免费观看视频| 人妻制服诱惑在线中文字幕| 青青草视频在线视频观看| 亚洲欧美成人精品一区二区| 一级a做视频免费观看| 免费少妇av软件| 我的女老师完整版在线观看| 亚洲精品乱码久久久v下载方式| av福利片在线| 欧美成人午夜免费资源| www.色视频.com| 亚洲精品乱码久久久v下载方式| 最黄视频免费看| 美女视频免费永久观看网站| av免费观看日本| 妹子高潮喷水视频| 如日韩欧美国产精品一区二区三区 | 久久午夜福利片| 国产精品.久久久| 啦啦啦视频在线资源免费观看| 亚洲久久久国产精品| 青春草亚洲视频在线观看| 人妻 亚洲 视频| 多毛熟女@视频| av专区在线播放| 有码 亚洲区| 日韩精品免费视频一区二区三区 | 日韩av不卡免费在线播放| 国产老妇伦熟女老妇高清| 亚洲经典国产精华液单| 一区二区三区乱码不卡18| 国产av精品麻豆| 性色avwww在线观看| 插逼视频在线观看| 色婷婷久久久亚洲欧美| 纵有疾风起免费观看全集完整版| a 毛片基地| 在线观看av片永久免费下载| 免费在线观看成人毛片| 国产精品成人在线| 亚洲av不卡在线观看| 亚洲美女黄色视频免费看| 日韩欧美精品免费久久| 一级爰片在线观看| 自拍偷自拍亚洲精品老妇| 亚洲,一卡二卡三卡| 久久国产精品男人的天堂亚洲 | 亚洲精品456在线播放app| 成年美女黄网站色视频大全免费 | 日日摸夜夜添夜夜爱| 成年女人在线观看亚洲视频| 街头女战士在线观看网站| 性色avwww在线观看| 亚洲经典国产精华液单| 婷婷色综合www| 午夜福利在线观看免费完整高清在| 午夜老司机福利剧场| 久久久久久久久久久免费av| 午夜老司机福利剧场| 你懂的网址亚洲精品在线观看| 久久国内精品自在自线图片| 久久热精品热| 国产69精品久久久久777片| 少妇人妻一区二区三区视频| 亚洲精品国产av蜜桃| 亚洲av成人精品一二三区| 亚洲不卡免费看| 国产伦精品一区二区三区视频9| 极品少妇高潮喷水抽搐| 中文精品一卡2卡3卡4更新| 成年女人在线观看亚洲视频| 中国国产av一级| 国产精品99久久久久久久久| 日日爽夜夜爽网站| 老司机影院毛片| 一本大道久久a久久精品| 人妻夜夜爽99麻豆av| 欧美精品亚洲一区二区| 亚洲欧美精品专区久久| 自线自在国产av| 日日撸夜夜添| 精品一品国产午夜福利视频| 99九九线精品视频在线观看视频| 大香蕉久久网| 夜夜骑夜夜射夜夜干| 国产成人精品无人区| 国产淫片久久久久久久久| 亚洲激情五月婷婷啪啪| 男人爽女人下面视频在线观看| 精品亚洲成国产av| 欧美bdsm另类| 综合色丁香网| 亚洲一级一片aⅴ在线观看| 99久久精品国产国产毛片| 免费大片黄手机在线观看| 一级毛片电影观看| 欧美精品高潮呻吟av久久| 人人妻人人澡人人看| 免费看av在线观看网站| 插逼视频在线观看| 日日爽夜夜爽网站| 欧美激情国产日韩精品一区| 18禁在线播放成人免费| 亚洲无线观看免费| 偷拍熟女少妇极品色| 尾随美女入室| 噜噜噜噜噜久久久久久91| 赤兔流量卡办理| 成人影院久久| 中文资源天堂在线| 亚洲av电影在线观看一区二区三区| 两个人免费观看高清视频 | 99热全是精品| 全区人妻精品视频| 美女内射精品一级片tv| 亚洲久久久国产精品| 一级毛片电影观看| 国产欧美日韩一区二区三区在线 | 哪个播放器可以免费观看大片| 免费观看性生交大片5| 中文字幕制服av| 美女脱内裤让男人舔精品视频| 一级毛片电影观看| 国产日韩欧美亚洲二区| 国产真实伦视频高清在线观看| 美女内射精品一级片tv| 99国产精品免费福利视频| 久久午夜综合久久蜜桃| 看免费成人av毛片| 国产精品久久久久成人av| 91午夜精品亚洲一区二区三区| 美女中出高潮动态图| 国国产精品蜜臀av免费| 国产欧美亚洲国产| 春色校园在线视频观看| 男女边摸边吃奶| 国产精品久久久久久久久免| 中国三级夫妇交换| av视频免费观看在线观看| 国产黄片视频在线免费观看| 夜夜看夜夜爽夜夜摸| 亚洲av成人精品一区久久| 色吧在线观看| 日韩在线高清观看一区二区三区| 91精品国产国语对白视频| 日本-黄色视频高清免费观看| 午夜激情福利司机影院| 成人国产麻豆网| 99热这里只有是精品50| 一级二级三级毛片免费看| 亚洲成色77777| 麻豆成人午夜福利视频| 日本午夜av视频| 久久久a久久爽久久v久久| 国产亚洲最大av| www.av在线官网国产| 久久国内精品自在自线图片| 国产黄频视频在线观看| 亚洲国产欧美日韩在线播放 | 一级黄片播放器| 男人舔奶头视频| 99热这里只有是精品在线观看| 视频区图区小说| 亚洲av成人精品一区久久| 国产日韩一区二区三区精品不卡 | 男女啪啪激烈高潮av片| 久久久久久人妻| 大片电影免费在线观看免费| 99国产精品免费福利视频| 亚洲va在线va天堂va国产| 日韩人妻高清精品专区| 晚上一个人看的免费电影| 国产精品人妻久久久影院| 午夜福利,免费看| 国产免费一区二区三区四区乱码| 日韩av在线免费看完整版不卡| 狠狠精品人妻久久久久久综合| 国产男人的电影天堂91| 精品少妇黑人巨大在线播放| 欧美 亚洲 国产 日韩一| 汤姆久久久久久久影院中文字幕| 日日啪夜夜爽| 国产视频首页在线观看| 三级经典国产精品| 欧美xxxx性猛交bbbb| 最新中文字幕久久久久| av专区在线播放| 久久 成人 亚洲| 天天操日日干夜夜撸| 欧美 日韩 精品 国产| 亚洲国产欧美在线一区| 亚洲国产日韩一区二区| 成年人午夜在线观看视频| 日本色播在线视频| 日韩视频在线欧美| 国精品久久久久久国模美| 高清黄色对白视频在线免费看 | 国产一区亚洲一区在线观看| 在线精品无人区一区二区三| 午夜福利视频精品| 国产av精品麻豆| 免费观看的影片在线观看| 中文乱码字字幕精品一区二区三区| 国产av精品麻豆| 国语对白做爰xxxⅹ性视频网站| 久久国产精品大桥未久av | 伦精品一区二区三区| 嫩草影院新地址| 三级经典国产精品| 一级毛片我不卡| 九九在线视频观看精品| 好男人视频免费观看在线| 国产av精品麻豆| 国产在视频线精品| 免费观看av网站的网址| 国产片特级美女逼逼视频| 亚洲精品日韩av片在线观看| 青春草视频在线免费观看| 国精品久久久久久国模美| 91久久精品电影网| 久久精品国产亚洲av天美| 亚洲精品国产色婷婷电影| 欧美日韩综合久久久久久| 久久99热6这里只有精品| 97超视频在线观看视频| 内射极品少妇av片p| 五月天丁香电影| 欧美bdsm另类| 欧美变态另类bdsm刘玥| 国模一区二区三区四区视频| 一区二区三区精品91| 乱码一卡2卡4卡精品| 少妇裸体淫交视频免费看高清| 寂寞人妻少妇视频99o| 亚洲国产成人一精品久久久| 免费av中文字幕在线| 人人妻人人澡人人爽人人夜夜| 久久精品国产亚洲网站| 黑人高潮一二区| 九草在线视频观看| 久久精品夜色国产| 色吧在线观看| 国产成人freesex在线| 欧美日韩av久久| 亚洲欧美成人综合另类久久久| 国产精品人妻久久久久久| 美女cb高潮喷水在线观看| 精华霜和精华液先用哪个| av专区在线播放| 一区二区三区免费毛片| 91aial.com中文字幕在线观看| 黄色欧美视频在线观看| 91精品伊人久久大香线蕉| 国产极品天堂在线| 又黄又爽又刺激的免费视频.| av在线播放精品| 精品人妻偷拍中文字幕| 中文在线观看免费www的网站| 午夜免费鲁丝| 国内少妇人妻偷人精品xxx网站| 国产深夜福利视频在线观看| 欧美性感艳星| 久久99一区二区三区| 国产深夜福利视频在线观看| 亚洲欧洲日产国产| 欧美激情极品国产一区二区三区 | 国产伦在线观看视频一区| 99热国产这里只有精品6| 极品少妇高潮喷水抽搐| 在线观看三级黄色| kizo精华| 国产av国产精品国产| 夜夜看夜夜爽夜夜摸| 青春草国产在线视频| 菩萨蛮人人尽说江南好唐韦庄| 午夜视频国产福利| 卡戴珊不雅视频在线播放| 肉色欧美久久久久久久蜜桃| 久久精品久久久久久久性| 日日撸夜夜添| 在线播放无遮挡| 午夜老司机福利剧场| 午夜日本视频在线| 建设人人有责人人尽责人人享有的|