• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ceramide from sphingomyelin hydrolysis differentially mediates mitogen-activated protein kinases (MAPKs) activation following cerebral ischemia in rat hippocampal CA1 subregion☆

    2010-02-24 02:54:54XianSunChaoLiuMinQianZhenghongZhaoJunGuo
    THE JOURNAL OF BIOMEDICAL RESEARCH 2010年2期

    Xian Sun, Chao Liu, Min Qian, Zhenghong Zhao, Jun Guo*

    aThe Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China

    bDepartment of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210029, China Received 30th November 2009

    INTRODUCTION

    Mitogen-activated protein kinases (MAPKs) are evolutionarily highly conserved serine/threonine protein enzymes that participate in signal transduction pathways connecting cell surface receptors to key regulatory nuclear and other intracellular targets[1,2].The MAPK cascade is composed of at least three sequential intracellular protein kinase activation steps initiated by the activation of MAPK kinase kinase (MAPKKK, MEKK), which in turn activates MAPK kinase (MAPKK, MKK or MEK) and finally MAPK[1,2]. Members of the MAPK family, include extracellular signal-regulated kinases (ERK), c-jun-N-terminal kinases (JNK) and p38 MAPK, play an important role in neuronal survival/damage in response to cerebral ischemia[3]. JNK and p38 MAPK are regarded as stress-activated protein kinases (SAPK)and are important in apoptosis and inflammation[4].ERK can be activated through a Ras/Raf/MEK/ERK cascade, promoting a spectrum of cellular responses,including growth and differentiation, as well as survival[5].

    Many signal molecules or messengers released following brain ischemia contribute to the activation of MAPKs. Calcium has been suggested to be a key signal in cerebral ischemia[3]; ceramide, one of the products induced by ischemia and a second messenger, mediating non-calcium-induced signaling cascades[6], is also assumed to have great importance for cerebral ischemic lesions[7,8]. It is known that ceramide is mainly generated from the hydrolysis of sphingomyelin (SM) through the action of sphingomyelinase as a bypass product of the SM pathway[9,10]. Ceramide has been reported to participate in apoptosis and directly or indirectly target a number of enzymes and signaling components, including proline-directed kinases such as the ceramideactivated kinase (CAPK) or JNK, the protein kinase c ζ (PKC ζ), ceramide-activated protein phosphatase(CAPP), phospholipases such as cPLA2 or PLD,transcription factors such as NF-κB, and CPP32-like caspases[10-12].

    In this study, we concentrated on the association between ceramide production and activation of JNK and ERK following cerebral ischemia. The data indicate that 1 h ischemia/reperfusion results in JNK activation and ERK inactivation. Moreover, a sphingomyelinase inhibitor inhibited the JNK pathway and promoted ERK activation. Thus, ceramide from sphingomyelin hydrolysis differentially mediates MAPKs activation following cerebral ischemia and reperfusion in rat hippocampus.

    MATERIALS AND METHODS

    Animal model

    Animal surgery was approved by the Institutional Animal Care and Use Committee and conformed to international guidelines for the ethical use of animals. Efforts were made to minimize the number of animals used and their suffering. Adult male Sprague-Dawley rats weighing 250-300 g were obtained from Experimental Animal Center of Nanjing Medical University. Rats were housed in airconditioned cages with free access to food and water.Cerebral ischemia was induced by the four-vessel occlusion method as described previously[6]. In brief,animals were anesthetized with 20% chloral hydrate(300 mg/kg, i.p.). Both vertebral arteries were occluded by electrocauterization and meanwhile silk threads were placed around both common carotid arteries without interrupting the blood flow. Twenty-four hours later,the bilateral carotid arteries were precisely occluded with aneurysm clips for 10 min, after which the clips were removed and the rat was allowed to recover. To minimize variability, the following criteria were met:① loss of corneal reflex, ② bilateral pupil dilation during the entire ischemic period, ③ completely flat electroencephalogram, ④ rigor of the extremities and vertebral column and ⑤ body temperature was maintained at approximately 37°C.

    I.C.V. infusion and administration of drugs

    The sphingomyelinase inhibitor N-tosyl-lphenylalanine chloromethyl ketone (TPCK; 10 μg/μl in DMSO, 3 μl; Sigma-Aldrich Co., St Louis ,MO,USA) or the same volume of vehicle was injected into the cerebral ventricle (0.8 mm posterior and 1.5 mm lateral to the bregma; 3.5 mm deep) by microinjector 30 minutes before inducing the ischemia.. The injector was kept in place for an additional 5 min after the injection so as to minimize any possible backflow of the liquid along with the injection void.

    Western blot

    All the rodents underwent 4-VO, endured 10-min ischemia, and were sacrificed by decapitation at different time points after different periods of reperfusion (10 min, 1 h, and 6 h). The hippocampi were quickly separated on ice and the hippocampal CA1 subfields were dissected according to previously published procedures[13]. The separated tissues were then homogenized in 1:10 (weight/volume) chilled homogenization buffer A [50 mM HEPES (pH 7.4),100 mM KCL, 1 mM Na3VO4, 50 mM NaF, and 1 mM PMSF] containing 1 % mammalian proteinase inhibitor cocktail (Sigma-Aldrich Co.). Proteins in the cytoplasm and membrane were obtained after centrifugation at 800 g for 10 min at 4°C. The supernatant samples were extracted and stored at-80°C until assayed. Protein extracts were denatured by boiling for 5 min in sample loading buffer.

    Denatured samples were separated by 10 % SDS-polyacrylamide gels and then semi-electrotransferred onto nitrocellulose filter (NC, pore size, 0.2 μm).The transferred proteins were reacted respectively with primary antibodies against ERK (1:5,000 dilution), against diphosphorylated ERK (1:2,000),against JNK (1:5,000), and against diphosphorylated JNK (1:1,000) for 4 hours at room temperature.The resulting immune complexes were then reacted with alkaline phosphatase conjugated secondary goat anti- rabbit IgG (1:10,000). All antibodies were purchased from Cell Signaling Technology(Beverly, MA, USA). Detection was developed by enhanced chemiluminescence (Amersham Bioscience,Piscataway, NJ, USA). The bands on the membranes were scanned and analyzed by an image analyzer.

    Statistical analysis

    Data are expressed as means±standard deviation(SD) from at least three independent animals.Statistical analyses was performed using one-way ANOVA followed by the Student-Newman-Keuls(SNK) method for protein expression levels. P values of less than 0.05 were considered significant.All analyses were performed using the SPSS software(Version 13.0, SPSS Inc., USA).

    RESULTS

    Reperfusion following ischemia leads to temporal alteration of p-ERK and p-JNK in the rat hippocampal CA1 subregion

    Rats in experimental groups were subjected to ischemia for 10 min followed by reperfusion for 10 min, 1h or 6 h, while rats in the sham group were only subjected to identical anesthesia and surgery without ischemia and reperfusion. To reveal the changes in ERK and JNK activity in the hippocampal CA1 subregion of rats for different durations of reperfusion (10 min, 1 h and 6 h), we used a specific antibody against ERK phosphorylation at Thr202/Tyr204 and an antibody against diphosphorylated JNK at Thr183/Tyr185. Western blot analyses were conducted to detect p-ERK, total ERK, p-JNK and total JNK levels.

    Fig. 1 ERK and JNK activity assay at different reperfusion times following ischemia in the hippocampal CA1 subregion of rats.Samples were obtained from rat hippocampal CA1 subfield of sham control animals and animals that underwent 10 min, 1 h and 6 h reperfusion following 10-min cerebral ischemia. Proteins were measured using antibodies against p-ERK (Thr202/Tyr204) and ERK, and against p-JNK (Thr183/Tyr185) and JNK. A: western blot analysis of content and phosphorylation of ERK and JNK of samples after 10-min, 1-h and 6-h reperfusion following 10-min ischemia. B: quantitative determination results of ERKs and JNKs phosphorylation. Optical density (OD) data are presented as means±SD (n = 3) and expressed as the magnitude of the alteration compared to the sham control. *Significantly different (P < 0.05) from the sham control; #Significantly different (P < 0.05) from the respective 10-min reperfusion groups.

    As shown in Fig. 1, ERK activity rapidly decreased following a strong activation at 10-min reperfusion after ischemia compared with shamoperated rats (P < 0.05). However, the p-JNK level gradually increased (P < 0.05) and reached its peak at 1h reperfusion post-ischemia (P < 0.05). The levels of the two phosphorylated proteins began decreasing as the reperfusion period was prolonged (P < 0.05).

    The changes in p-ERK and p-JNK arose from phosphorylation, because there was no alteration of the amount of ERK protein and JNK protein in each group in response to different treatments (P > 0.05; Fig. 1).

    Effects of TPCK on ischemia-induced activation of ERK and JNK

    TPCK, a cell-permeable serine protease inhibitor,can attenuate the generation of ceramide via inhibiting sphingomyelinase[14]. TPCK or the same dose of vehicle was administered 30 minutes before inducing ischemia. After 1 h reperfusion, compared with the vehicle-treated rats, rats treated with TPCK exhibited a significant increase in the level of p-ERK(P < 0.05), but a decrease in the level of p-JNK (P< 0.05). The disparity between p-ERK and p-JNK resulted from phosphorylation, as no alteration of the total ERK or JNK protein was detected during treatment (P > 0.05; Fig. 2).

    Together, these data suggest that rapid accumulation of ceramide probably results from cleavage of sphingomyelin induced by activated sphingomyelinase and is responsible for the activation of JNK and a sharp inactivation of ERK after cerebral ischemia and reperfusion.

    Fig. 2 Effect of TPRK on diphosphorylation of ERK and JNK in rat hippocampal CA1 subregion. Samples were obtained from hippocampal CA1 subregion of rats subjected to 1-h reperfusion following 10-min ischemia after administration of TPCK (TPCK,i.c.v) or the same dose of vehicle (Veh). A: western blot assay of p-ERK and p-JNK with and without TPCK during 1-h reperfusions following 10-min ischemia. B: quantitative representation of ERKs and JNKs phosphorylation. OD data are presented as means±SD(n = 3) and expressed as magnitude of the alteration compared to the sham control. #Significantly different (P < 0.05) from respective vehicle-treated group.

    DISCUSSION

    Cerebral ischemia/reperfusion produces multiple changes in signaling cascades that are crucial for cell survival/damage. A detailed understanding of these changes can provide not only fundamental insights but also potential targets for therapeutic intervention.In this study, aimed at a better understanding of the activation of MAPK, we investigated the role that ceramide plays in the activation of MAPK during cerebral ischemia and reperfusion.

    Consistent with previous studies, JNK, which contributes to neuronal apoptosis, exhibited a peak of activation at approximately 1 h of reperfusion[15], while ERK was undergoing a sharp inactivation following the early intense activation that was elicited by cerebral ischemia. The JNK pathway can be intensely activated by factors such as TNF-α and IL-1β, which are known to be increased after a stroke and have been shown to be involved in the mechanisms underlying ischemia-induced neuron apoptosis[16]. ERK activation has been described as being calcium-dependent[17,18],and Ca2+signals might effectively stimulate calciumdependent kinases like CaMK Ⅱ, Src, PYK2 and PKC that are mainly implicated in ERK activation as upstream regulatory molecules[19]. Cerebral ischemia and resulting massive calcium influx could induce the biphasic activation of ERK in rat hippocampus[20,21],but it has been demonstrated that the rapid inactivation of ERK following the early intense increase occurred in a calcium-independent manner because inhibition of the calcium influx through NMDA receptor could not relieve the inactivation of ERK[21]. Therefore,some other mechanisms may account for this effect.

    In order to better understand the different changes of JNK and ERK at 1h reperfusion, the cellpermeable serine protease inhibitor, TPCK was used.With TPCK pretreatment, JNK activity decreased dramatically while the sharp inactivation of ERK was visibly reversed, indicating that the ceramide signaling pathway activated by sphingomyelin hydrolysis led to activation of JNK but inactivation of ERK. Based on current knowledge, we considered the possibility that ceramide induces apoptosis through activation of downstream effectors such as the JNK pathway[12,22], so a low level of p-JNK is not unreasonable since ceramide generation is blocked by the sphingomyelinase inhibitor TPCK.Nevertheless it is still an open question as to how ceramide activates the JNK pathway. It has been suggested that some intermediate enzymes described in other cellular systems may be implicated with this process in neurons, such as the small G-protein Rac-1[23], the MAP kinase kinase kinase TGFb-activating kinase 1(TAK1)[24], PKC ζ[25], the Apoptosis Signal regulated Kinase 1 (ASK1)[26]or the MAP three kinase 1 (MTK1/MEKK4)[27].

    In contrast to JNK, ceramide has a negative impact on the ERK pathway as mentioned above. The molecular mechanism by which ceramide inhibits the ERK pathway in neurons remains unclear. As is known, ERK activity depends on its phosphorylation state, resulting from the balanced action of both ERK kinases and ERK-directed protein phosphatases.The immediate upstream kinase of ERK, MEK, is also activated by phosphorylation through kinases in the Raf serine/threonine kinase family[2]. PP2A,a heterotrimeric holoenzyme, has been identified to be the major ERK phosphatase which is responsible for ERK inactivation in ischemic brain tissues[28].Further, PP2A was reported to be a ceramidedependent phosphatase[29]and its activity increases through interaction with ceramide on the catalytic subunit[12]. In this way an elevation of ceramide encourages PP2A to depress the activity of ERK. In addition, ceramide could directly target the CAPK or PKC ζ. The CAPK, which has been hypothesized to be the kinase suppressor of Ras (KSR)[30], is probably another negative regulator of the ERK pathway in response to ceramide. It has also been reported that ceramide could act on MLK3/SPRK that functions as a MAPKKK in the stress-activated JNK pathway,and contribute to inhibition of the ERK pathway through sustained JNK activation[31]. Thus, ceramide participates in neuron injury partially through ERK inactivation following cerebral ischemia.

    In summary, ceramide derived from sphingomyelin hydrolysis strongly promotes JNK activation and suppresses highly activated ERK during the early period of cerebral ischemia and reperfusion, which in turn, attenuates neuroprotective effects and results in ischemic lesions. Additional investigations are required to fully illuminate the molecular mechanisms by which ceramide functions during cerebral ischemia and reperfusion.

    [1] Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature 2001;410:37-40

    [2] Pearson G, Robinson F, Beers Gibson T, Xu BE,Karandikar M, Berman K, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001;22:153-83.

    [3] Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics.Brain Res Rev 2007;54:34-66.

    [4] Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995; 270:1326-31.

    [5] Seger R, Krebs EG. The MAPK signaling cascade.FASEB J 1995;9:726-35.

    [6] Zhao J, Wu HW, Chen YJ, Tian HP, Li LX, Han X, et al. Protein phosphatase 2A-negative regulation of the protective signaling pathway of Ca2+/CaM-dependent ERK activation in cerebral ischemia. J Neurosci Res 2008;86:2733-45.

    [7] Yu ZF, Nikolova-Karakashian M, Zhou D, Cheng G,Schuchman EH, Mattson MP. Pivotal role for acidic sphingomyelinase in cerebral ischemia-induced ceramide and cytokine production, and neuronal apoptosis. J Mol Neurosci 2000;15:85-97.

    [8] Ohtani R, Tomimoto H, Kondo T, Wakita H, Akiguchi I, Shibasaki H, et al. Upregulation of ceramide and its regulating mechanism in a rat model of chronic cerebral ischemia. Brain Res. 2004;1023:31-40.

    [9] Andrieu-Abadie N, Levade T. Sphingomyelin hydrolysis during apoptosis. Biochim Biophys Acta 2002;1585:126-34.

    [10] Kolesnick RN, Kr?nke M. Regulation of ceramide production and apoptosis. Annu Rev Physiol 1998;60:643-65.

    [11] Ruvolo PP. Intracellular signal transduction pathways activated by ceramide and its metabolites. Pharmacol Res 2003;47:383-9.

    [12] Basu S, Kolesnick R. Stress signals for apoptosis:ceramide and c-Jun kinase. Oncogene 1998;17:3277-85.

    [13] Hu BR, Liu CL, Park DJ. Alteration of MAP kinase pathways after transient forebrain ischemia. J Cereb Blood Flow Metab 2000;20:1089-95.

    [14] Feng Y, LeBlanc MH. N-tosyl-L-phenylalanylchloromethyl ketone reduces ceramide during hypoxicischemic brain injury in newborn rat. Eur J Pharmacol 2006;551:34-40.

    [15] Ferrer I, Friguls B, Dalfó E, Planas AM. Early modifications in the expression of mitogen-activated protein kinase (MAPK/ERK), stress-activated kinases SAPK/JNK and p38, and their phosphorylated substrates following focal cerebral ischemia. Acta Neuropathol 2003;105:425-37.

    [16] Irving EA, Bamford M. Role of mitogen- and stressactivated kinases in ischemic injury. J Cereb Blood Flow Metab 2002;22:631-47.

    [17] Xia Z, Dudek H, Miranti CK, Greenberg ME. Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J Neurosci 1996;16:5425-36.

    [18] Wu HW, Li HF, Guo J. N-methyl-D-aspartate receptor mediate diphosphorylation of extracellular signalregulated kinase through Src family tyrosine kinases and CaMKII following ischemia in rat hippocampus.Neurosci. Bull 2007;23:78-82.

    [19] Enslen H, Tokumitsu H, Stork PJ, Davis RJ, Soderling TR. Regulation of mitogen-activated protein kinases by a calcium/calmodulin-dependent protein kinase cascade.Proc Natl Acad Sci U S A 1996;93:10803-8.

    [20] Gu Z, Jiang Q, Zhang G, Cui Z, Zhu Z.Diphosphorylation of extracellular signal-regulated kinases and c-Jun N-terminal protein kinases in brain ischemic tolerance in rat. Brain Res 2000;860:157-60.

    [21] Guo J, Wu HW, Hu G, Han X, De W, Sun YJ. Sustained activation of Src-family tyrosine kinases by ischemia:a potential mechanism mediating extracellular signalregulated kinase cascades in hippocampal dentate gyrus.Neuroscience 2006;143:827-36.

    [22] Verheij M, Bose R, Lin XH, Yao B, Jarvis WD, Grant S, et al. Requirement for ceramide-initiated SAPK/JNK signaling in stress-induced apoptosis. Nature.1996;380:75-9.

    [23] Brenner B, Koppenhoefer U, Weinstock C, Linderkamp O, Lang F, Gulbins E. Fas- or ceramide-induced apoptosis is mediated by a Rac1-regulated activation of Jun N-terminal kinase/p38 kinases and GADD153. J Biol Chem 1997;272:22173-81.

    [24] Shirakabe K, Yamaguchi K, Shibuya H, Irie K, Matsuda S, Moriguchi T, et al. TAK1 mediates the ceramide signaling to stress-activated protein kinase/c-Jun N-terminal kinase. J Biol Chem 1997;272:8141-4.

    [25] Bourbon NA, Yun J, Kester M. Ceramide directly activates protein kinase C zeta to regulate a stressactivated protein kinase signaling complex. J Biol Chem 2000;275:35617-23.

    [26] Chen Z, Seimiya H, Naito M, Mashima T, Kizaki A, Dan S, et al. ASK1 mediates apoptotic cell death induced by genotoxic stress. Oncogene 1999;18:173-80.

    [27] Takekawa M, Posas F, Saito H. A human homolog of the yeast Ssk2/Ssk22 MAP kinase kinase kinases, MTK1,mediates stress-induced activation of the p38 and JNK pathways. EMBO J 1997;16:4973-82.

    [28] Ho Y, Logue E, Callaway CW, DeFranco DB. Different mechanisms account for extracellular-signal regulated kinase activation in distinct brain regions following global ischemia and reperfusion. Neuroscience 2007;145:248-55.

    [29] Prinetti A, Bassi R, Riboni L, Tettamanti G. Involvement of a ceramide activated protein phosphatase in the differentiation of neuroblastoma Neuro2a cells. FEBS Lett 1997;414:475-9.

    [30] Denouel-Galy A, Douville EM, Warne PH, Papin C,Laugier D, Calothy G, et al. Murine Ksr interacts with MEK and inhibits Ras-induced transformation. Curr Biol 1998;8:46-55.

    [31] Shen YH, Godlewski J, Zhu J, Sathyanarayana P, Leaner V, Birrer MJ, et al. Cross-talk between JNK/SAPK and ERK/MAPK pathways: sustained activation of JNK blocks ERK activation by mitogenic factors. J Biol Chem 2003;278:26715-21.

    亚洲国产高清在线一区二区三| 欧美xxⅹ黑人| 蜜桃亚洲精品一区二区三区| 听说在线观看完整版免费高清| 最新中文字幕久久久久| 国产高清不卡午夜福利| 人妻一区二区av| 国产一级毛片在线| 国产在视频线精品| 18禁在线播放成人免费| 日韩欧美 国产精品| 男人添女人高潮全过程视频| 成人二区视频| 最近手机中文字幕大全| 久久久久久久精品精品| 精品久久国产蜜桃| 免费高清在线观看视频在线观看| 亚洲国产日韩一区二区| tube8黄色片| 秋霞在线观看毛片| 久久97久久精品| 欧美精品国产亚洲| av网站免费在线观看视频| 特级一级黄色大片| 中文字幕免费在线视频6| 色婷婷久久久亚洲欧美| 天美传媒精品一区二区| 日韩不卡一区二区三区视频在线| 边亲边吃奶的免费视频| 国产成人精品福利久久| 日韩电影二区| 国产91av在线免费观看| 欧美3d第一页| 国产片特级美女逼逼视频| 69av精品久久久久久| 国产精品精品国产色婷婷| 色吧在线观看| 日韩不卡一区二区三区视频在线| 久久精品国产自在天天线| 自拍偷自拍亚洲精品老妇| 日韩av不卡免费在线播放| 天天一区二区日本电影三级| 免费av观看视频| 99热这里只有是精品50| 亚洲精品一区蜜桃| 国产日韩欧美亚洲二区| a级毛色黄片| 亚洲精品中文字幕在线视频 | 99九九线精品视频在线观看视频| 18禁裸乳无遮挡动漫免费视频 | 性插视频无遮挡在线免费观看| 精品一区二区免费观看| 亚洲精品久久久久久婷婷小说| 国产一区二区三区综合在线观看 | 最新中文字幕久久久久| 成人毛片60女人毛片免费| 国产成人freesex在线| 在线观看一区二区三区激情| 欧美 日韩 精品 国产| 亚洲国产色片| av卡一久久| 丝袜美腿在线中文| 夜夜爽夜夜爽视频| 18禁裸乳无遮挡免费网站照片| 大片免费播放器 马上看| 久久精品久久精品一区二区三区| 噜噜噜噜噜久久久久久91| 国产免费视频播放在线视频| 在线观看国产h片| 激情五月婷婷亚洲| 久久久国产一区二区| 少妇的逼好多水| 亚洲av福利一区| 欧美精品国产亚洲| 各种免费的搞黄视频| 国产午夜精品久久久久久一区二区三区| 精品人妻偷拍中文字幕| 夫妻性生交免费视频一级片| 少妇高潮的动态图| 伦精品一区二区三区| 色5月婷婷丁香| 欧美老熟妇乱子伦牲交| 日韩国内少妇激情av| 一个人看视频在线观看www免费| 不卡视频在线观看欧美| 色5月婷婷丁香| 亚洲无线观看免费| 久久久久国产网址| 一个人看的www免费观看视频| 亚洲人成网站在线观看播放| 国产免费又黄又爽又色| 亚洲国产精品国产精品| 超碰97精品在线观看| 久久精品国产亚洲网站| 国产人妻一区二区三区在| 插阴视频在线观看视频| 观看美女的网站| 嫩草影院精品99| 97在线视频观看| 亚洲国产欧美在线一区| 精品久久国产蜜桃| 欧美一区二区亚洲| 国产成人免费无遮挡视频| av卡一久久| 一区二区三区免费毛片| 王馨瑶露胸无遮挡在线观看| 丰满少妇做爰视频| 亚洲综合精品二区| 国产淫片久久久久久久久| 99热全是精品| 黄色视频在线播放观看不卡| 日韩 亚洲 欧美在线| 免费在线观看成人毛片| 少妇人妻精品综合一区二区| 狂野欧美激情性bbbbbb| av女优亚洲男人天堂| 最近2019中文字幕mv第一页| 国产视频内射| 建设人人有责人人尽责人人享有的 | 日韩av免费高清视频| 最近最新中文字幕免费大全7| 爱豆传媒免费全集在线观看| 国产成人91sexporn| 国产亚洲午夜精品一区二区久久 | 简卡轻食公司| 国产成人a∨麻豆精品| 亚洲欧美日韩卡通动漫| 亚洲欧美日韩卡通动漫| 久久人人爽av亚洲精品天堂 | 亚洲精品国产成人久久av| 久久久精品94久久精品| 观看美女的网站| 精品久久久久久久末码| 男人和女人高潮做爰伦理| 99热这里只有是精品在线观看| 亚洲精品456在线播放app| 欧美日韩亚洲高清精品| 久久精品国产亚洲av天美| 亚洲美女搞黄在线观看| 精品人妻一区二区三区麻豆| 青春草视频在线免费观看| 精品视频人人做人人爽| 日韩视频在线欧美| 亚洲在久久综合| 人体艺术视频欧美日本| 婷婷色麻豆天堂久久| 国产精品三级大全| 欧美成人一区二区免费高清观看| 亚洲精品第二区| 亚洲人成网站在线播| 91精品一卡2卡3卡4卡| 高清午夜精品一区二区三区| 又大又黄又爽视频免费| 欧美性猛交╳xxx乱大交人| 欧美日韩国产mv在线观看视频 | 性色av一级| 欧美潮喷喷水| 亚洲色图av天堂| 国产精品无大码| 国产精品三级大全| 亚洲无线观看免费| 亚洲最大成人中文| 久久热精品热| 久久久成人免费电影| 一级二级三级毛片免费看| 亚洲国产最新在线播放| 精品一区二区三区视频在线| 久久久久网色| 97在线人人人人妻| 波野结衣二区三区在线| 亚洲激情五月婷婷啪啪| 精品久久久久久电影网| 亚洲精品国产色婷婷电影| 国产高清有码在线观看视频| 能在线免费看毛片的网站| 国产黄色视频一区二区在线观看| 特大巨黑吊av在线直播| 国产色婷婷99| 欧美激情国产日韩精品一区| 久久女婷五月综合色啪小说 | 免费播放大片免费观看视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 激情五月婷婷亚洲| 在线观看免费高清a一片| 国产亚洲av嫩草精品影院| 成人二区视频| 成人综合一区亚洲| 你懂的网址亚洲精品在线观看| 99热国产这里只有精品6| 免费大片18禁| 51国产日韩欧美| 蜜桃亚洲精品一区二区三区| 欧美高清性xxxxhd video| 欧美潮喷喷水| 黄色日韩在线| 日韩人妻高清精品专区| 精华霜和精华液先用哪个| 亚洲av免费在线观看| 国产精品女同一区二区软件| 能在线免费看毛片的网站| 日本黄色片子视频| 亚洲av在线观看美女高潮| 日韩一区二区视频免费看| 亚洲国产日韩一区二区| 久久99精品国语久久久| av免费在线看不卡| 国产av国产精品国产| 欧美xxxx黑人xx丫x性爽| 亚洲美女搞黄在线观看| 又黄又爽又刺激的免费视频.| 久久久欧美国产精品| 久久久久国产网址| 91久久精品电影网| 99热网站在线观看| 18禁在线播放成人免费| 欧美日韩国产mv在线观看视频 | av国产久精品久网站免费入址| 国产 精品1| 内地一区二区视频在线| 男女无遮挡免费网站观看| 白带黄色成豆腐渣| 欧美精品人与动牲交sv欧美| 久久久久久久久大av| 一级二级三级毛片免费看| 亚洲国产最新在线播放| 麻豆精品久久久久久蜜桃| 最近最新中文字幕大全电影3| 久久久久久久久久成人| 亚洲电影在线观看av| 深夜a级毛片| 国产男女内射视频| 啦啦啦中文免费视频观看日本| 热99国产精品久久久久久7| 国产精品蜜桃在线观看| kizo精华| 亚洲欧美一区二区三区黑人 | 色网站视频免费| 午夜福利在线在线| 亚洲精品乱久久久久久| 久久午夜福利片| 美女视频免费永久观看网站| 免费人成在线观看视频色| 三级经典国产精品| 人体艺术视频欧美日本| 中文欧美无线码| 嫩草影院精品99| 下体分泌物呈黄色| 直男gayav资源| 麻豆成人av视频| 夫妻性生交免费视频一级片| 26uuu在线亚洲综合色| 亚洲精品国产色婷婷电影| 一区二区三区免费毛片| 免费黄色在线免费观看| 欧美成人精品欧美一级黄| 国产精品一区二区三区四区免费观看| 少妇人妻一区二区三区视频| 久久综合国产亚洲精品| 国产老妇伦熟女老妇高清| 亚洲人成网站高清观看| 美女脱内裤让男人舔精品视频| 2022亚洲国产成人精品| 99久久中文字幕三级久久日本| 精品久久久久久久末码| 狂野欧美白嫩少妇大欣赏| 99热这里只有是精品50| 久久女婷五月综合色啪小说 | av一本久久久久| 建设人人有责人人尽责人人享有的 | 国模一区二区三区四区视频| 青春草国产在线视频| 中国美白少妇内射xxxbb| 国产精品一区二区在线观看99| 26uuu在线亚洲综合色| 在线观看美女被高潮喷水网站| 99久久精品国产国产毛片| 内地一区二区视频在线| 免费大片黄手机在线观看| 久久久亚洲精品成人影院| 97超视频在线观看视频| 毛片女人毛片| 免费人成在线观看视频色| 亚洲av欧美aⅴ国产| 亚洲精品色激情综合| 亚洲国产色片| 国产精品国产av在线观看| 国产一区二区三区av在线| 2018国产大陆天天弄谢| 最近手机中文字幕大全| 尤物成人国产欧美一区二区三区| 五月开心婷婷网| 欧美日韩视频精品一区| 国产综合精华液| 老司机影院成人| 波多野结衣巨乳人妻| 91久久精品电影网| 大码成人一级视频| 天天躁日日操中文字幕| 婷婷色av中文字幕| 精品久久久久久久人妻蜜臀av| 成人亚洲欧美一区二区av| 91aial.com中文字幕在线观看| 大片电影免费在线观看免费| 久久久久九九精品影院| 高清在线视频一区二区三区| 国产成人精品福利久久| 亚洲天堂av无毛| 国产av国产精品国产| 一级av片app| 欧美人与善性xxx| 亚洲真实伦在线观看| 国产精品三级大全| 欧美xxxx性猛交bbbb| 国产一区有黄有色的免费视频| 黄色日韩在线| 最新中文字幕久久久久| 久久97久久精品| 内地一区二区视频在线| 99久久九九国产精品国产免费| 婷婷色综合大香蕉| 卡戴珊不雅视频在线播放| 午夜精品国产一区二区电影 | 熟女电影av网| 亚洲av男天堂| 久久午夜福利片| 尤物成人国产欧美一区二区三区| 免费大片黄手机在线观看| 亚洲精品日韩av片在线观看| 久久影院123| 少妇人妻精品综合一区二区| 亚洲人成网站高清观看| 国产av码专区亚洲av| 久久久久久久久大av| 性插视频无遮挡在线免费观看| 久久久久久久国产电影| 精品少妇黑人巨大在线播放| 国产精品成人在线| 久久ye,这里只有精品| 亚洲国产色片| 国产色婷婷99| 三级国产精品欧美在线观看| 国产亚洲午夜精品一区二区久久 | 免费av不卡在线播放| 视频区图区小说| 国产在视频线精品| 国产色婷婷99| 免费看a级黄色片| 深爱激情五月婷婷| 免费黄色在线免费观看| kizo精华| 免费观看a级毛片全部| 欧美激情在线99| 国产91av在线免费观看| 亚洲国产日韩一区二区| 精品人妻视频免费看| 日韩成人av中文字幕在线观看| 免费黄网站久久成人精品| 久久久久久久久久人人人人人人| 大码成人一级视频| 国产69精品久久久久777片| 女人久久www免费人成看片| 免费不卡的大黄色大毛片视频在线观看| 国产人妻一区二区三区在| 免费看不卡的av| 欧美日韩视频精品一区| av卡一久久| 亚洲在线观看片| 亚洲欧美日韩无卡精品| 日本爱情动作片www.在线观看| 久久精品国产亚洲av天美| 成年女人看的毛片在线观看| 又粗又硬又长又爽又黄的视频| 韩国av在线不卡| 国产毛片a区久久久久| 七月丁香在线播放| 国产精品一区www在线观看| 国产精品不卡视频一区二区| 99热国产这里只有精品6| videossex国产| 欧美97在线视频| 国产一区二区三区av在线| 婷婷色综合www| 日韩在线高清观看一区二区三区| 国产精品无大码| 一级毛片我不卡| 91精品一卡2卡3卡4卡| 五月伊人婷婷丁香| 丰满少妇做爰视频| 欧美97在线视频| 精品人妻视频免费看| 久久6这里有精品| 国产日韩欧美亚洲二区| 两个人的视频大全免费| 听说在线观看完整版免费高清| 亚洲美女搞黄在线观看| 午夜福利网站1000一区二区三区| 激情五月婷婷亚洲| 嘟嘟电影网在线观看| 制服丝袜香蕉在线| 国产一区二区在线观看日韩| 国产精品女同一区二区软件| 久久精品国产亚洲av天美| 身体一侧抽搐| 搡老乐熟女国产| 超碰97精品在线观看| av.在线天堂| 久久久久久久午夜电影| 美女视频免费永久观看网站| 免费av不卡在线播放| 各种免费的搞黄视频| 亚洲成人一二三区av| 国产高潮美女av| 亚洲精品久久午夜乱码| 高清在线视频一区二区三区| 欧美精品一区二区大全| 18禁在线播放成人免费| 国产69精品久久久久777片| 国产精品.久久久| 国产国拍精品亚洲av在线观看| 在线免费十八禁| 亚洲最大成人中文| 赤兔流量卡办理| 国产精品久久久久久精品电影| av卡一久久| 99热这里只有是精品50| 亚洲av中文av极速乱| 国产亚洲最大av| 久久精品国产亚洲网站| 欧美+日韩+精品| 日韩中字成人| 精品久久久久久久末码| 久久精品久久久久久久性| 内射极品少妇av片p| 精品久久久久久电影网| 国产av国产精品国产| 男人添女人高潮全过程视频| 欧美精品人与动牲交sv欧美| 听说在线观看完整版免费高清| 日本三级黄在线观看| 国产乱人视频| 女人十人毛片免费观看3o分钟| 国产在线一区二区三区精| 国产成人精品久久久久久| 久久ye,这里只有精品| 色视频www国产| 色网站视频免费| 国产成年人精品一区二区| 一级av片app| 永久免费av网站大全| 国产免费视频播放在线视频| 99热6这里只有精品| 久久久久国产网址| 国产一区二区亚洲精品在线观看| 少妇熟女欧美另类| 大又大粗又爽又黄少妇毛片口| 国产一区二区三区av在线| 天天躁日日操中文字幕| 特级一级黄色大片| 中文精品一卡2卡3卡4更新| 久久精品国产亚洲av天美| 午夜福利在线在线| 最近2019中文字幕mv第一页| 亚洲最大成人中文| 搡老乐熟女国产| 最近最新中文字幕大全电影3| 日韩不卡一区二区三区视频在线| 蜜桃亚洲精品一区二区三区| 欧美精品一区二区大全| 99久久精品国产国产毛片| 欧美变态另类bdsm刘玥| 欧美精品国产亚洲| 欧美另类一区| 国精品久久久久久国模美| av专区在线播放| 亚洲av免费在线观看| 久久精品久久久久久久性| 国内少妇人妻偷人精品xxx网站| av国产精品久久久久影院| 18+在线观看网站| 日本wwww免费看| 在线免费观看不下载黄p国产| 国产熟女欧美一区二区| 18禁在线播放成人免费| 日本一本二区三区精品| 深夜a级毛片| 日韩免费高清中文字幕av| 成人高潮视频无遮挡免费网站| 深爱激情五月婷婷| 午夜精品一区二区三区免费看| 日韩大片免费观看网站| 嘟嘟电影网在线观看| 国产精品一及| 男女那种视频在线观看| 久久人人爽av亚洲精品天堂 | 亚洲精华国产精华液的使用体验| 成人漫画全彩无遮挡| 免费av不卡在线播放| 六月丁香七月| 在线观看av片永久免费下载| 国产爽快片一区二区三区| 亚洲国产av新网站| 久久这里有精品视频免费| 亚洲av一区综合| 不卡视频在线观看欧美| 国产精品熟女久久久久浪| 国产精品国产三级专区第一集| 亚洲欧美清纯卡通| 国产黄频视频在线观看| 亚洲av在线观看美女高潮| 免费不卡的大黄色大毛片视频在线观看| 欧美高清成人免费视频www| 在线观看免费高清a一片| 欧美最新免费一区二区三区| 少妇人妻精品综合一区二区| 国产精品成人在线| tube8黄色片| 国产精品女同一区二区软件| 久久久久国产网址| 亚洲国产精品成人久久小说| 看非洲黑人一级黄片| 99热这里只有精品一区| 九九久久精品国产亚洲av麻豆| 秋霞在线观看毛片| 男女边摸边吃奶| 99久久精品国产国产毛片| 大话2 男鬼变身卡| 王馨瑶露胸无遮挡在线观看| 免费av不卡在线播放| 国产精品女同一区二区软件| 人人妻人人爽人人添夜夜欢视频 | 亚洲天堂av无毛| 久久久久久久精品精品| 亚洲欧美成人精品一区二区| 久久久久久伊人网av| 别揉我奶头 嗯啊视频| 日本与韩国留学比较| 久久精品国产亚洲网站| 夫妻性生交免费视频一级片| 欧美xxxx黑人xx丫x性爽| 亚洲怡红院男人天堂| 在线 av 中文字幕| 肉色欧美久久久久久久蜜桃 | 大香蕉97超碰在线| 老司机影院毛片| 精品一区在线观看国产| 黄色欧美视频在线观看| av播播在线观看一区| 久久精品夜色国产| 人人妻人人澡人人爽人人夜夜| 亚洲av一区综合| 精品亚洲乱码少妇综合久久| 哪个播放器可以免费观看大片| 99久久精品国产国产毛片| 18+在线观看网站| 亚洲激情五月婷婷啪啪| 美女内射精品一级片tv| 看免费成人av毛片| 大码成人一级视频| 中文在线观看免费www的网站| 国产精品福利在线免费观看| 简卡轻食公司| 网址你懂的国产日韩在线| 午夜亚洲福利在线播放| 亚洲三级黄色毛片| 日本与韩国留学比较| 国产中年淑女户外野战色| 三级经典国产精品| 欧美zozozo另类| 人妻 亚洲 视频| 九色成人免费人妻av| 亚洲国产精品国产精品| 国产精品一及| 国产久久久一区二区三区| 免费av毛片视频| 日本三级黄在线观看| 亚洲av国产av综合av卡| 亚洲精品成人av观看孕妇| 欧美最新免费一区二区三区| 久久6这里有精品| 熟女av电影| 成人特级av手机在线观看| 中文在线观看免费www的网站| 国产成人91sexporn| 热re99久久精品国产66热6| 黄片无遮挡物在线观看| 丝袜脚勾引网站| 亚洲av欧美aⅴ国产| 亚洲国产精品成人综合色| 久久久久国产网址| 青春草亚洲视频在线观看| 国产成人午夜福利电影在线观看| 色吧在线观看| 国产日韩欧美在线精品| 最新中文字幕久久久久| 欧美极品一区二区三区四区| 午夜福利在线在线| 91精品国产九色| 国产黄色免费在线视频| 欧美丝袜亚洲另类| 欧美xxⅹ黑人| 久久久久精品性色| 日本免费在线观看一区| 色婷婷久久久亚洲欧美| .国产精品久久| 18禁裸乳无遮挡免费网站照片| 国产女主播在线喷水免费视频网站| 成人无遮挡网站| 国产精品久久久久久久电影| 一个人观看的视频www高清免费观看| 国产精品.久久久| 天美传媒精品一区二区| 久久久久久久久久久免费av| av卡一久久| 永久网站在线| 91久久精品国产一区二区成人|