• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Down syndrome and the molecular pathogenesis resulting from trisomy of human chromosome 21

    2010-02-24 02:54:52ArtiRupreliFrncesWisemnOliviShepprdVictorTyulewiczElizethFisher
    THE JOURNAL OF BIOMEDICAL RESEARCH 2010年2期

    Arti Rupreli, Frnces Wisemn, Olivi Shepprd,Victor L.J. Tyulewicz, Elizeth M.C. Fisher*

    aDepartment of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK bMRC National Institute for Medical Research, The Ridgeway, London, UK

    INTRODUCTION

    Down Syndrome (DS) is the consequence of trisomy of human chromosome 21 (Hsa21) and is the most common genetic form of intellectual disability,occurring in approximately 1 in 700 live births[1]. DS is characterised by invariant features that are common to all affected individuals, including mild-to-moderate learning disabilities, craniofacial abnormalities and hypotonia[2,3]. In addition, at least 80 other variable phenotypes that affect only a proportion of DS individuals have been described, such as an earlyonset of Alzheimer's disease, atrioventricular septal heart defects, acute megakaryoblastic leukemia and a decrease in the incidence of some solid tumours[4-7].Significant advances in medical treatment and social care have increased the average life span of people with DS to greater than 60 years[8].

    The additional copy of Hsa21 results in elevated expression of many of the genes encoded on this chromosome, with varying expression levels in different tissues[9-11]. The increased dosage of Hsa21 genes, and the dosage imbalance between Hsa21 and non-Hsa21 genes has been proposed to cause the plethora of phenotypic alterations that characterize DS. The gene-rich distal part of Hsa21, identified as the 'Down syndrome critical region' (DSCR), was initially proposed to be sufficient to cause most of these DS phenotypes[12-14]. However, accumulating evidence points against a single DSCR[14,15]. Current data suggest that a number of 'susceptibility regions'located on Hsa21, which are modified by other loci on Hsa21 and elsewhere in the genome, increase the risk of developing specific DS associated phenotypes[14,15].

    Mouse models of DS are instrumental in identifying which genes contribute to DS phenotypes, and unraveling the mechanisms by which these phenotypes arise[16-24]. Hsa21 is syntenic to three regions of the mouse genome. Most of the genes on Hsa21 have homologous genes on mouse chromosome 16(Mmu16), but two smaller gene rich regions have synteny on Mmu10 and Mmu17 (Fig. 1). The majority of mouse models used for DS research are either trisomic for large regions of Mmu16, 10, 17 or are transgenic animals used to investigate overexpression of a single gene[16-32]. The Tc1 mouse model, with which we mainly work, carries a freely segregating almost complete copy of Hsa21, in addition to a normal complement of the mouse chromosome[33].

    In this review, we highlight recent developments in understanding how overexpression of Hsa21 genes leads to many of the features of DS. We focus on key areas including brain, heart and cancer, as these are currently the most developed in our understanding of the molecular pathogenesis of DS.

    RECENT BREAKTHROUGHS IN OUR UNDERSTANDING OF PHENOTYPES ARISING FROM TRISOMY HSA21

    Learning and Memory

    Fig. 1 Mouse models of Hsa21 trisomy. Hsa21 (purple) is syntenic with regions of mouse chromosomes 16 (Mmu16, blue), 17(Mmu17, orange) and 10 (Mmu10, green). The positions of some Hsa21 genes implicated in the pathogenesis of DS and mentioned in this text are shown on the human chromosome. The transchromosomic Tc1 model carries a freely segregating copy of Hsa21 and is trisomic for the majority of genes on Hsa21[33]. Several mouse models are syntenic with a proportion of genes on Hsa21 and are segmentally trisomic for regions of Mmu16, such as the Dp1Yu[18], Ts65Dn[25], Ts2Cje[23], Ts1Cje[24], and Ts1Rhr[19] models. The Ts1Yah mouse model[22] is syntenic to Mmu17 and is trisomic for the sub-telomeric region of Hsa21.

    People with DS have learning and memory problems and exhibit differences in brain structure compared to the euploid population[34-39]. Mouse models of DS recapitulate these neuroanatomical changes and behavioural deficits, and thus can be used to further our understanding of learning and memory in people with DS[25]. The Ts65Dn mouse model of DS is trisomic for approximately 136 genes on Mmu16 that have homologues on Hsa21[25](Fig. 1). These mice have learning and memory phenotypes and it has been proposed that excess inhibition of synaptic transmission may contribute to their deficits[25,40]. Recent papers have shown that the structure of receptors and their abundance at inhibitory synapses is altered in the hippocampus of Ts65Dn mice, which provides insight into the neurological changes that may underlie their DS-associated memory problems[41,42]. In addition, impaired synaptic plasticity was recently demonstrated in Ts65Dn striatal cholinergic interneurons[43], highlighting a potentially novel and important role for the interstriatal cholinergic system in the pathophysiology of DS-associated motor and cognitive defects. The Tc1 mouse model of DS, which is trisomic for approximately 80% Hsa21 genes, has short-term but not long-term deficits in hippocampal-dependent learning and abnormalities in long-term potentiation(LTP), which is proposed to be a physiological correlate of learning[33,44]. Interestingly, although Tc1 mice display major deficits in cerebellum-dependent learning tasks, no abnormalities in synaptic function or in cerebellar long-term depression can be detected in this model[45].

    In the Ts1Rhr mouse model (Fig. 1), trisomy of 33 Mmu16 genes that are syntenic to the DSCR and include dual-specificity tyrosine-(Y)-phosphorylationregulated kinase 1A (Dyrk1A), potassium inwardlyrectifying channel, subfamily J, member 6 Gene(Girk2) and single-minded homologue 2 (Sim2), cause alterations in dendritic spine morphology and deficits in some behavioural tests[46](Table 1). Trisomy of these genes is necessary but not sufficient to elicit Morris water maze learning deficits in mouse DS models[13].These data indicate that interactions of Hsa21 trisomic genes may contribute to DS-associated learning and memory problems. Trisomy of 12 genes (Abcg1-U2af1) found on the Hsa21 sub-telomeric region in Ts1Yah mice (Fig. 1), produced cognitive defects in working and short-term recognition memory, but an enhancement of hippocampal-dependent spatial learning[22]. This study is pivotal in showing that variation in copy number is not always deleterious.

    The over-expression of a number of Hsa21 genes has been implicated in learning and memory deficits in single gene transgenic mouse models, suggesting that trisomy of these genes may contribute to learning disability in DS individuals. These genes include DYRK1A, synaptojanin 1(SYNJ1) and SIM2[26,28-32,47,48].Recent evidence has emerged for a possible role in brain function of dopey family member 2 (DOPEY2)[49]and Down syndrome cell adhesion molecule (DSCAM)[50],two Hsa21 genes known to be involved in learning and memory.

    Neurodevelopment

    Neurodevelopment is known to be altered in people with DS. Already by mid-gestation the brains offetuses with DS are smaller than those which do not have the condition. Cerebellar granule cells in Ts65Dn mice have reduced proliferation rates and elongation of the cell cycle length which could potentially result in a decrease in brain mass[51]; the number of these cells is also reduced in the Tc1 mouse model[33].Neural progenitor cells (NPCs) from the Ts1Cje mouse model also exhibit similar defects as well as an increase in cell death[52]. The Ts1Cje and Ts2Cje mouse models have smaller brains, hypoplasia of the cerebellum, enlarged ventricles and decreased neurogenesis compared to euploid littermates[53].The common region that is trisomic between these two mouse models contains approximately 86 genes(Fig.1), suggesting that this trisomic segment contains the causal dosage-sensitive genes for these detrimental developmental phenotypes[53,54]. The decreased proliferation of cerebellar granule cells observed in the Ts65Dn mice has been attributed to a deficient mitotic response to the Sonic hedgehog (Shh) growth factor[55].An altered response to Shh has also been demonstrated in Ts65Dn neural crest progenitor cells, and this may contribute to the craniofacial dysmorphology that is associated with DS[56,57].

    Table 1 Chromosome 21 genes implicated in the pathogenesis of DS phenotypes

    Elevated rates of neuronal apoptosis related to oxidative stress have been reported in DS[58]. Recent work suggests that Hsa21-encoded proteins PREP1,a transcription factor involved in the regulation of organism size[59], and tetratricopeptide repeat domain 3 (TTC3), an E3 ubiquitin ligase that targets AKT,a serine/threonine-protein kinase, may contribute to this phenotype[60]. Moreover, recent research provides evidence that oxidative stress is elevated in the Ts1Cje mouse, suggesting that one or more genes trisomic in this model, likely contribute to DS-associated oxidative stress[61]. Interestingly, aneuploidy of chromosomes other than Hsa21 also results in elevated apoptosis and reduced cellular proliferation[62,63].

    Recently, it was proposed that DYRK1A contributes to DS neural phenotypes, such as impaired dendritic growth, by disturbing neuron-restrictive silencer factor (REST/NRSF) levels[27,64]. MicroRNAs encoded by Hsa21 may also influence development of the brain; specifically trisomy of miR-155 and miR-802 has been suggested to regulate the expression of the methyl-CpG-binding-protein gene (MECP2), which is known to be important in neurodevelopment[65].

    Pharmacological interventions to tackle brain and cognition in DS

    This is a relatively new area of research in DS that is rapidly gaining momentum, and which arises from experiments carried out in mouse models in which behavioural, neurophysiological and cellular biology changes can be quantitatively assessed during development and ageing, and then modified through pharmacological intervention.

    Several pharmacological interventions to enhance cognition in people with DS have been suggested, based upon efficacy in the Ts65Dn mouse (Table 2). Chronic treatment with gammaaminobutyric acid (GABA) A receptor antagonists,picrotoxin or pentylenetetrazole, improved hippocampal-based learning and LTP deficits in Ts65Dn animals[40,66,67]. The GABA-ergic system regulates neuronal excitability throughout the nervous system and plays a significant role in cognition.Memantine, a non-competitive N-methyl-D-aspartic acid receptor (NMDAR) antagonist, has also been documented to improve learning in Ts65Dn mice[68],and is currently undergoing a clinical trial in a large group of DS patients[69]. Some clinical trials of Donepezil, an acetylcholinesterase inhibitor that is proposed to improve cholinergic neurotransmission,have reported small improvements in a subset of measures of cognition in people with DS[70-72];however, not all Donepezil trials have demonstrated a statistically significant effect[73-76].

    Recently, other pathways that modulate learning and memory have been examined with interest.Norepinephrine signaling in the hippocampus has been suggested to be impaired in the Ts65Dn mice because of degeneration of the locus coeruleus[77,78].In this model, learning deficits were reversed by treatment with a norepinephrine prodrug, L-DOPS, orxamoterol, a β1-adrenergic receptor partial antagonist.Interestingly, epigallocatechin gallate (ECGC), a natural polyphenol found in green tea leaves and is a specific inhibitor of DYRK1A, has been shown to attenuate cognitive defects arising from DYRK1A over-expression in transgenic mice[79]. Therapeutic interventions aimed at targeting oxidative imbalance report promising effects. Long-term supplementation with the antioxidant Vitamin E has been reported to partially rescue cognitive and morphological abnormalities in Ts65Dn mice[80], and reduce the oxidation state of S100 calcium binding protein beta(S100β), an Hsa21-encoded protein that is neurotoxic when in a reduced state[81].

    Table 2 Pharmacological interventions to tackle cognitive deficits in DS

    Neurogenesis impairments in the Ts65Dn mice have been rescued by prenatal treatment with the mood-stabiliser, lithium, and by use of the antidepressant, fluoxetine[82,83]. Developmental delays and glial deficits in the Ts65Dn mouse model have been demonstrated to be partially reversed through prenatal treatment with neuroprotective peptides NAPVSIPQ+SALLRSIPA[84]. These results indicate that therapies during pregnancy could potentially improve developmental and glial deficits in DS.

    The current findings are based on a thorough understanding of neuronal and cognitive deficits in mouse models of DS and are exciting in the therapeutic opportunities they offer. However, as with all pharmacological interventions, caution must be taken in translating findings from mice to humans.

    Alzheimer Disease in DS

    A high incidence of early-onset Alzheimer Disease(AD) occurs in people with DS, with 30-70% of DS individuals developing dementia by the age of 60[4,85-87]. AD pathology is characterized by brain atrophy, extracellular β-amyloid (Aβ) deposits and the accumulation of neurofibrillary tangles (NFTs)that are composed of hyperphosphorylated Tau. The amyloid precursor protein, amyloid precursor protein(APP), from which Aβ is produced, is encoded on Hsa21. In DS, the triplication of APP is proposed to be the underlying mechanism through which trisomy 21 individuals demonstrate an increased frequency of dementia[88-90].

    Neurodegenerative phenotypes have also been observed in animal models of DS[77,91-94]. In particular,loss of basal forebrain cholinergic neurons (BFCNs)occurs early in AD and is also observed in the Ts65Dn mouse[92,93,95]. Degeneration of these cells is related to a failure in the retrograde transport of nerve growth factor (NGF), and may arise from trisomy of APP[92]. Increased APP expression is also linked to enlargement of early endosomes . Recently, it was reported that lowering the expression of APP or beta-site APP-cleaving enzyme 1 (BACE-1), reversed endocytic abnormalities in fibroblasts derived from people with DS, and the over-expression of APP alone resulted in early endosome enlargements[100]. These data suggest that triplication of APP is sufficient to cause endosomal deficits, in contrast to previous reports[97]. Hsa21 genes other than APP may also contribute to endosomal phenotypes, in particular,overexpression of Hsa21 gene homologues in Drosophila, dap160/ITSN1 (intersectin1), synj/SYNJ1 and nla/RCAN1 (runt-related tremscripthon factor 1),results in abnormal synaptic morphology and impaired vesicle recycling[92,101].

    Other Hsa21 trisomic genes may also contribute to AD through different mechanisms. DYRK1A,an Hsa21 encoded kinase, phosphorylates Tau at a key priming site which may mediate its AD-related hyperphosphorylation in people with DS[102].DYRK1A can also phosphorylate APP[103]. Indeed,increased phosphorylation of Tau has been reported in the Ts1Cje mouse model of DS that is not trisomic for APP[104](Fig. 1). Mis-regulated splicing of Tau may contribute to NFT formation in AD[105,106]. PCBP3,an Hsa21 protein, modifies splicing of Tau and may contribute to the expression of AD associated Tau isoforms in people with DS[107]. Recently, degeneration of Purkinje cells in the cerebellum of aged Ts65Dn mice, proximal to deposits of Aβ and Tau, has been observed[94,108].

    Other neurological disorders

    Six percent of children and adolescents with DS have epileptic seizures[109]. Children with DS are also susceptible to infantile spasms, however little is known about the molecular mechanisms underlying this. Treating Ts65Dn mice with GABA(B) receptor agonists induced a phenotype reminiscent of infantile spasms, providing a model to further understand the pathogenesis of this phenotype[110]. Moyamoya syndrome, a cerebrovascular condition that is characterized by reduced blood flow predisposing to stroke[111], has been reported to occur with a higher frequency in people with DS than in the general population[112]. Recently, the expression of β-catenin was found to be increased in brain capillary endothelial cells in the Ts65Dn mouse model,however whether this finding is linked to Moyamoya syndrome is as yet unclear[113,114].

    People with DS have been reported to experience disturbed sleeping patterns. Studies of circadian activity in the Ts65Dn mouse model have reported conflicting results of both intact and disturbed rhythms[117]. Future studies of this phenotype in alternative mouse models of DS will thus be of value.

    Cancer and leukemia

    Children with DS have a greatly elevated risk of developing the otherwise very rare transient myeloproliferative disorder (TMD), as well as acute megakaryocytic leukemia (AMKL) and acute lymphoblastic leukemia (ALL)[6,118,119]. Trisomy of Hsa21 leads to an expansion of the megakaryocyteerythroid progenitor population[120,121], which precedes the development of TMD. The development of TMD and AMKL is almost always associated with stereotypical mutations in exon 2 of the GATA binding protein 1 (GATA1) gene resulting in the synthesis of a truncated GATA1 protein termed GATA1s[6,122,123].Mutations in Janus kinase 3 (JAK3) have also been reported by several groups to be associated with AMKL[119,124-128]. Additionally, one fifth of DS-ALL cases have been associated with janus kinase 2 (JAK2)point mutations[129,130]. DS-ALL is also associated with aberrant expression of cyto kine receptor-like factor 2 (CRLF2) linked to genomic rearrangements[130-132].Trisomy of an Hsa21-encoded gene, v-ets erythroblastosis virus E26 oncogene homolog (ERG),is required for development of the myeloproliferation defect in the Ts65Dn model[133]. The Hsa21 gene runt-related transcription factor 1 (RUNX1) has also been proposed to regulate hematopoiesis via the phosphoinositide 3 (PI3)-kinase/AKT pathway[134-136].

    Despite perturbations of hematopoietic development in the Ts1Cje, Ts65Dn and Tc1 models of DS,these mice do not develop leukaemia, even when the trisomic models also express disease-associated GATA1 mutations[137-139]. It is possible that trisomy of Hsa21 genes other than those encoded in these models,in concert with mutations in non-Hsa21 encoded genes such as GATA1, JAK3 or CRLF2, may be required for the development of leukemia.

    Although DS is associated with a predisposition to leukemia, people with DS have a reduced risk of developing most solid tumours[7,140]. Crossing a mouse model of colon cancer, Apcmin, with mouse models of DS resulted in reduced formation of tumors,dependent on the trisomy of the Hsa21-encoded ETS2 gene[141]. Recently overexpression of the Hsa21 gene,regulator of calcineurin (RCAN1), was shown to be sufficient to suppress tumour growth by attenuating angiogenesis via the regulation of vascular endothelial growth factor (VEGF) signaling[142]. However, in a Ts65Dn trisomic background removal of one copy of Rcan1 did not completely abrogate the effect of trisomy on tumour formation, suggesting that other Hsa21 genes also contribute to this phenotype[142].

    Heart defects

    Congenital heart defects (CHD) are prevalent in 40% of children with DS and over 50% of all atrioventricular septal heart defects (AVSDs) in infancy are attributed to trisomy Hsa21[5,143]. Mutations in cysteine-rich with EGF-like domains 1(CRELD1),a non-Hsa21 gene, contribute to the occurrence of AVSD in DS[144]. Several DS mouse models exhibit heart defects reminiscent of those in DS[18,33,63,145],suggesting that trisomic genes common to these models influence the development of the heart.Analysis of the occurrence of CHD in people who have partial trisomies of Hsa21 has suggested that trisomy of genes within a 1.77 Mb region [DSCAMZNF295 (zinc finger protein 295)] of Hsa21 may be sufficient for the development of CHD[14].

    CONCLUSION

    DS is complex disorder and dissecting the genetic and molecular processes underlying the syndrome requires many different complementary approaches,including the study of human data and mouse and other model organisms. However, several recent breakthroughs have increased our understanding of the effects of Hsa21 trisomy. Combining information from studies of people with DS with the power of mouse models of trisomy has enabled genetic associations to be tested and continues to lead to the identification of genes that cause DS-associated pathology. Significant advances in basic research have been instrumental in determining the molecular mechanisms underlying these phenotypes leading to useful therapeutic interventions. However, many aspects of DS crucial to the health and well-being of people with the condition remain to be investigated and require study at all levels.

    ACKNOWLEDGEMENTS

    We thank the Brain Research Trust, the Wellcome Trust, the UK Medical Research Council and the AnEUploidy grant from Framework Programme 6 from the European Union Commission for funding.We thank Ray Young for graphics.

    [1] Gardiner K.J. Molecular basis of pharmacotherapies for cognition in Down syndrome. Trends Pharmacol Sci 2010; 31: 66-73.

    [2] Hassold T, Abruzzo M, Adkins K, Griffin D, Merrill M,Millie E, et al. Human aneuploidy: incidence, origin, and etiology. Environ Mol Mutagen 1996;28:167-75.

    [3] Antonarakis SE, Lyle R, Dermitzakis ET, Reymond A., Deutsch S. Chromosome 21 and down syndrome:from genomics to pathophysiology. Nat Rev Genet 2004;5:725-38.

    [4] Johannsen P, Christensen JE, Mai J. The prevalence of dementia in Down syndrome. Dementia 1996;7:221-5.

    [5] Freeman SB, Bean LH, Allen EG, Tinker SW, Locke AE, Druschel C, et al. Ethnicity, sex, and the incidence of congenital heart defects: a report from the National Down Syndrome Project. Genet Med 2008;10:173-80.

    [6] Wechsler J, Greene M, McDevitt MA, Anastasi J, Karp JE, Le Beau MM, et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome.Nat Genet 2002;32:148-52.

    [7] Hasle H. Pattern of malignant disorders in individuals with Down's syndrome. Lancet Oncol 2001;2: 429-36.

    [8] Bittles AH, Glasson EJ. Clinical, social, and ethical implications of changing life expectancy in Down syndrome. Dev Med Child Neurol 2004;46:282-6.

    [9] Prandini P, Deutsch S, Lyle R, Gagnebin M, Delucinge VC, Delorenzi M, et al. Natural gene-expression variation in Down syndrome modulates the outcome of gene-dosage imbalance. Am J Hum Genet 2007; 81:252-63.

    [10] Ait Yahya-Graison E, Aubert J, Dauphinot L, Rivals I, Prieur M, Golfier G, et al. Classification of human chromosome 21 gene-expression variations in Down syndrome: impact on disease phenotypes. Am J Hum Genet 2007;81:475-91.

    [11] Sultan M , Piccini I, Balzereit D, Herwig R, Saran NG,Lehrach H, et al. Gene expression variation in Down's syndrome mice allows prioritization of candidate genes.Genome Biol 2007;8:R91.

    [12] Pritchard MA, Kola I. The "gene dosage effect"hypothesis versus the "amplified developmental instability" hypothesis in Down syndrome. J Neural Transm Suppl, 1999;57:293-303.

    [13] Olson LE, Roper RJ, Sengstaken CL, Peterson EA,Aquino V, Galdzicki Z, et al. Trisomy for the Down syndrome 'critical region' is necessary but not sufficient for brain phenotypes of trisomic mice. Hum Mol Genet 2007;16:774-82.

    [14] Korbel JO, Tirosh-Wagner T, Urban AE, Chen XN,Kasowski M, Dai L, et al. The genetic architecture of Down syndrome phenotypes revealed by highresolution analysis of human segmental trisomies. PNAS 2009;106:12031-6.

    [15] Lyle R, Bena F, Gagos S, Gehrig C, Lopez G, Schinzel A, et al. Genotype-phenotype correlations in Down syndrome identified by array CGH in 30 cases of partial trisomy and partial monosomy chromosome 21. Eur J Hum Genet 2009;17:454-66.

    [16] Brault V, Besson V, Magnol L, Duchon A, Herault Y.Cre/loxP-mediated chromosome engineering of the mouse genome. Handb Exp Pharmacol 2007;178:29-48.

    [17] Duchon A, Besson V, Pereira PL, Magnol L, Herault Y.Inducing segmental aneuploid mosaicism in the mouse through targeted asymmetric sister chromatid event of recombination. Genetics 2008;180:51-9.

    [18] Li Z, Yu T, Morishima M, Pao A, LaDuca J, Conroy J, et al. Duplication of the entire 22.9 Mb human chromosome 21 syntenic region on mouse chromosome 16 causes cardiovascular and gastrointestinal abnormalities. Hum Mol Genet 2007;16:1359-66.

    [19] Olson LE, Richtsmeier JT, Leszl J, Reeves RH. A chromosome 21 critical region does not cause specific Down syndrome phenotypes. Science 2004;306:687-90.

    [20] Brault V, Pereira P, Duchon A, Herault Y. Modeling chromosomes in mouse to explore the function of genes,genomic disorders, and chromosomal organization. PLoS Genet 2006;2:e86.

    [21] Besson V, Brault V, Duchon A, Togbe D, Bizot JC,Quesniaux VF, et al. Modeling the monosomy for the telomeric part of human chromosome 21 reveals haploinsufficient genes modulating the inflammatory and airway responses. Hum Mol Genet 2007;16:2040-52.

    [22] Pereira PL, Magnol L, Sahun I, Brault V, Duchon A,Prandini P, et al. A new mouse model for the trisomy of the Abcg1-U2af1 region reveals the complexity of the combinatorial genetic code of down syndrome. Hum Mol Genet 2009;18:4756-69.

    [23] Villar AJ, Belichenko PV, Gillespie AM, Kozy HM, Mobley WC, Epstein CJ. Identification and characterization of a new Down syndrome model,Ts[Rb(12.1716)]2Cje, resulting from a spontaneous Robertsonian fusion between T(171)65Dn and mouse chromosome 12. Mamm Genome 2005;16:79-90.

    [24] Sago H, Carlson EJ, Smith DJ, Kilbridge J, Rubin EM,Mobley WC, et al. Ts1Cje, a partial trisomy 16 mouse model for Down syndrome, exhibits learning and behavioral abnormalities. PNAS 1998;95:6256-61.

    [25] Reeves RH, Irving NG, Moran TH, Wohn A, Kitt C,Sisodia SS, et al. A mouse model for Down syndrome exhibits learning and behaviour deficits. Nat Genet 1995;11:177-84.

    [26] Ahn KJ, Jeong HK, Choi HS, Ryoo SR, Kim YJ, Goo JS, et al. DYRK1A BAC transgenic mice show altered synaptic plasticity with learning and memory defects.Neurobiol Dis 2006;22:463-72.

    [27] Lepagnol-Bestel AM, Zvara A, Maussion G, Quignon F, Ngimbous B, Ramoz N, et al. DYRK1A interacts with the REST/NRSF-SWI/SNF chromatin remodelling complex to deregulate gene clusters involved in the neuronal phenotypic traits of Down syndrome. Hum Mol Genet 2009;18:1405-14.

    [28] Best TK, Siarey R J, Galdzicki Z. Ts65Dn, a mouse model of Down syndrome, exhibits increased GABAB-induced potassium current. J Neurophysiol 2007;97:892-900.

    [29] Voronov SV, Frere SG, Giovedi S, Pollina EA, Borel C,Zhang H, et al. Synaptojanin 1-linked phosphoinositide dyshomeostasis and cognitive deficits in mouse models of Down's syndrome. PNAS 2008;105:9415-20.

    [30] Altafaj X, Dierssen M, Baamonde C, Marti E, Visa J,Guimera J, et al. Neurodevelopmental delay, motor abnormalities and cognitive deficits in transgenic mice overexpressing Dyrk1A (minibrain), a murine model of Down's syndrome. Hum Mol Genet 2001;10:1915-23.

    [31] Chrast R, Scott HS, Madani R, Huber L, Wolfer DP,Prinz M, et al. Mice trisomic for a bacterial artificial chromosome with the single-minded 2 gene (Sim2) show phenotypes similar to some of those present in the partial trisomy 16 mouse models of Down syndrome. Hum Mol Genet 2000;9:1853-64.

    [32] Ema M, Ikegami S, Hosoya T, Mimura J, Ohtani H,Nakao K, et al. Mild impairment of learning and memory in mice overexpressing the mSim2 gene located on chromosome 16: an animal model of Down's syndrome.Hum Mol Genet 1999;8:1409-15.

    [33] O'Doherty A, Ruf S, Mulligan C, Hildreth V, Errington ML, Cooke S, et al. An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes. Science 2005;309:2033-7.

    [34] Vicari S, Carlesimo GA. Short-term memory deficits are not uniform in Down and Williams syndromes.Neuropsychol Rev 2006;16:87-94.

    [35] Carlesimo GA, Marotta L, Vicari S. Long-term memory in mental retardation: evidence for a specific impairment in subjects with Down's syndrome. Neuropsychologia 1997;35:71-9.

    [36] Weis S, Weber G, Neuhold A, Rett A. Down syndrome:MR quantification of brain structures and comparison with normal control subjects. AJNR 1991;12:1207-11.

    [37] Aylward EH, Habbak R, Warren AC, Pulsifer MB, Barta PE, Jerram M, et al. Cerebellar volume in adults with Down syndrome. Arch Neurol 1997;54:209-12.

    [38] Pearlson GD, Breiter SN, Aylward EH, Warren AC,Grygorcewicz M, Frangou S, et al. MRI brain changes in subjects with Down syndrome with and without dementia. Dev Med Child Neurol 1998;40:326-34.

    [39] Aylward EH, Li Q, Honeycutt NA, Warren AC, Pulsifer MB, Barta P E, et al. MRI volumes of the hippocampus and amygdala in adults with Down's syndrome with and without dementia. Am J Psychiatry 1999;156:564-8.

    [40] Kleschevnikov AM, Belichenko PV, Villar AJ, Epstein CJ, Malenka RC, Mobley WC. Hippocampal long-term potentiation suppressed by increased inhibition in the Ts65Dn mouse, a genetic model of Down syndrome. J Neurosci 2004;24:8153-60.

    [41] Belichenko PV, Masliah E, Kleschevnikov AM, Villar AJ, Epstein CJ, Salehi A, et al. Synaptic structural abnormalities in the Ts65Dn mouse model of Down Syndrome. J Comp Neurol 2004;480:281-98.

    [42] Belichenko PV, Kleschevnikov AM, Masliah E, Wu C, Takimoto-Kimura R, Salehi A, et al. Excitatoryinhibitory relationship in the fascia dentata in the Ts65Dn mouse model of Down syndrome. J Comp Neurol 2009;512:453-66.

    [43] Di Filippo M, Tozzi A, Ghiglieri V, Picconi B, Costa C, Cipriani S, et al. Impaired plasticity at specific subset of striatal synapses in the Ts65Dn mouse model of Down syndrome. Biol Psychiatry, DOI:10.1016/j.physletb.2003.10.071.(2009)

    [44] Morice E, Andreae LC, Cooke SF, Vanes L, Fisher EM,Tybulewicz VL, et al. Preservation of long-term memory and synaptic plasticity despite short-term impairments in the Tc1 mouse model of Down syndrome. Learn Mem 2008;15:492-500.

    [45] Galante M, Jani H, Vanes L, Daniel H, Fisher EM,Tybulewicz VL, et al. Impairments in motor coordination without major changes in cerebellar plasticity in the Tc1 mouse model of Down syndrome. Hum Mol Genet 2009;18:1449-63.

    [46] Belichenko NP, Belichenko PV, Kleschevnikov AM, Salehi A, Reeves RH, Mobley WC. The "Down syndrome critical region" is sufficient in the mouse model to confer behavioral, neurophysiological, and synaptic phenotypes characteristic of Down syndrome. J Neurosci 2000;29:5938-48.

    [47] Best TK, Cho-Clark M, Siarey RJ, Galdzicki Z.Speeding of miniature excitatory post-synaptic currents in Ts65Dn cultured hippocampal neurons. Neurosci Lett 2008;438:356-61.

    [48] Meng X, Shi J, Peng B, ZouX, Zhang C. Effect of mouse Sim2 gene on the cell cycle of PC12 cells. Cell Biol Int 2006;30:349-53.

    [49] Rachidi M, Delezoide AL, Delabar JM, Lopes C. A quantitative assessment of gene expression (QAGE)reveals differential overexpression of DOPEY2, a candidate gene for mental retardation, in Down syndrome brain regions. Int J Dev Neurosci 2009;27:393-8.

    [50] Yu HH, Yang JS, Wang J, Huang Y, Lee T. Endodomain diversity in the Drosophila Dscam and its roles in neuronal morphogenesis. J Neurosci 2009;29:1904-14.

    [51] Contestabile A, Fila T, Bartesaghi R, Ciani E. Cell cycle elongation impairs proliferation of cerebellar granule cell precursors in the Ts65Dn mouse, an animal model for Down syndrome. Brain Pathol 2009;19: 224-37.

    [52] Moldrich RX, Dauphinot L, Laffaire J, Vitalis T, Herault Y, Beart PM, et al. Proliferation deficits and gene expression dysregulation in Down's syndrome (Ts1Cje)neural progenitor cells cultured from neurospheres. J Neurosci Res 2009;87:3143-52.

    [53] Ishihara K, Amano K, Takaki E, Shimohata A, Sago H,Epstein J, et al. Enlarged brain ventricles and impaired neurogenesis in the Ts1Cje and Ts2Cje mouse models of Down syndrome. Cereb Cortex DOI:10.1093/cercor/bhp176. (2009)

    [54] Laffaire J, Rivals I, Dauphinot L, Pasteau F, Wehrle R,Larrat B, et al. Gene expression signature of cerebellar hypoplasia in a mouse model of Down syndrome during postnatal development. BMC Genomics 2009;10:138.

    [55] Roper RJ, Baxter LL, Saran NG, Klinedinst DK,Beachy PA, Reeves RH. Defective cerebellar response to mitogenic Hedgehog signaling in Down [corrected]syndrome mice. PNAS 2006;103:1452-6.

    [56] Roper RJ, VanHorn JF, Cain CC, Reeves RH. A neural crest deficit in Down syndrome mice is associated with deficient mitotic response to Sonic hedgehog. Mech Dev 2009;126;212-9.

    [57] Richtsmeier JT, Baxter LL, Reeves RH. Parallels of craniofacial maldevelopment in Down syndrome and Ts65Dn mice. Dev Dyn 2000;217:137-45.

    [58] Busciglio J, Yankner BA. Apoptosis and increased generation of reactive oxygen species in Down's syndrome neurons in vitro. Nature 1995;378:776-9.

    [59] Micali N, Longobardi E, Iotti G, Ferrai C, Castagnaro L, Ricciardi M, et al. Down syndrome fibroblasts and mouse Prep1-overexpressing cells display increased sensitivity to genotoxic stress. Nucleic Acids Res DOI:10.1093/nar/gkq019.(2010)

    [60] Suizu F, Hiramuki Y, Okumura F, Matsuda M, Okumura AJ, Hirata N, et al. The E3 ligase TTC3 facilitates ubiquitination and degradation of phosphorylated Akt.Dev Cell 2009;17:800-10.

    [61] Ishihara K, Amano K, Takaki E, Ebrahim AS, Shimohata A, Shibazaki N, et al. Increased lipid peroxidation in Down's syndrome mouse models. J Neurochem 2009;110:1965-76.

    [62] Kai Y, Wang CC, Kishigami S, Kazuki Y, Abe S,Takiguchi M, et al. Enhanced apoptosis during early neuronal differentiation in mouse ES cells with autosomal imbalance. Cell Res 2009;19:247-58.

    [63] Williams AD, Mjaatvedt CH, Moore CS.Characterization of the cardiac phenotype in neonatal Ts65Dn mice. Dev Dyn 2008:237:426-35.

    [64] Canzonetta C, Mulligan C, Deutsch S, Ruf S, O'Doherty A, Lyle R, et al. DYRK1A-dosage imbalance perturbs NRSF/REST levels, deregulating pluripotency and embryonic stem cell fate in Down syndrome. Am J Hum Genet 2008;83:388-400.

    [65] Kuhn DE, Nuovo GJ, Terry AV, Jr, Martin MM,Malana GE, Sansom SE, et al. Chromosome 21-derived microRNAs provide an etiological basis for aberrant protein expression in human Down syndrome brains. J Biol Chem 2010;285:1529-43.

    [66] Fernandez F, Morishita W, Zuniga E, Nguyen J, Blank M, Malenka RC, et al. Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome. Nat Neurosci 2007;10:411-3.

    [67] Rueda N, Florez J, Martinez-Cue C. Chronic pentylenetetrazole but not donepezil treatment rescues spatial cognition in Ts65Dn mice, a model for Down syndrome. Neurosci Lett 2008;433:22-7.

    [68] Costa AC, Scott-McKean JJ, Stasko MR. Acute injections of the NMDA receptor antagonist memantine rescue performance deficits of the Ts65Dn mouse model of Down syndrome on a fear conditioning test.Neuropsychopharmacology 2008;33:1624-32.

    [69] Mohan M, Bennett C, Carpenter PK. Memantine for dementia in people with Down syndrome. Cochrane.Database.Syst.Rev., DOI: 10.1002/14651858.CD007657. (2009)

    [70] Spiridigliozzi GA, Heller JH, Crissman BG, Sullivan-Saarela JA, Eells R, Dawson D, et al. Preliminary study of the safety and efficacy of donepezil hydrochloride in children with Down syndrome: a clinical report series.Am J Med Genet A2007;143A:1408-13.

    [71] Heller JH, Spiridigliozzi GA, Sullivan JA, Doraiswamy PM, Krishnan RR, Kishnani PS, Donepezil for the treatment of language deficits in adults with Down syndrome: a preliminary 24-week open trial. Am J Med Genet A 2003;116A:111-6.

    [72] Heller JH, Spiridigliozzi GA, Doraiswamy PM, Sullivan JA, Crissman BG, Kishnani PS. Donepezil effects on language in children with Down syndrome: results of the first 22-week pilot clinical trial. Am J Med Genet A 2004;130A:325-6.

    [73] Johnson N, Fahey C, Chicoine B, Chong G, Gitelman D.Effects of donepezil on cognitive functioning in Down syndrome. Am J Ment Retard 2003;108:367-72.

    [74] Lott IT, Osann K, Doran E, Nelson L. Down syndrome and Alzheimer disease: response to donepezil. Arch Neurol 2002;59:1133-6.

    [75] Prasher VP, Huxley A, Haque MS. A 24-week, doubleblind, placebo-controlled trial of donepezil in patients with Down syndrome and Alzheimer's disease--pilot study. Int J Geriatr Psychiatr 2002;17:270-8.

    [76] Kishnani PS, Sommer BR, Handen BL, Seltzer B,Capone GT, Spiridigliozzi GA, et al. The efficacy,safety, and tolerability of donepezil for the treatment of young adults with Down syndrome. Am J Med Genet A 2009;149A:1641-54.

    [77] Salehi A, Faizi M, Colas D, Valletta J, Laguna J, Takimoto-Kimura R, et al. Restoration of norepinephrine-modulated contextual memory in a mouse model of Down syndrome. Science Translational Medicine 1, 7ra17. DOI:10.1126/scitranslmed.3000258(2009).

    [78] Wiseman FK. Cognitive enhancement therapy for a model of Down syndrome. Science Translational Medicine 1, 7ps9. DOI:10.1126/scitranslmed.3000449.(2009)

    [79] Guedj F, Sebrie C, Rivals I, Ledru A, Paly E, Bizot JC, et al. Green tea polyphenols rescue of brain defects induced by overexpression of DYRK1A. PLoS.One 4,e4606. DOI:10.1371/journal.pone.0004606.(2009)

    [80] Lockrow J, Prakasam A, Huang P, Bimonte-Nelson H,Sambamurti K, Granholm AC. Cholinergic degeneration and memory loss delayed by vitamin E in a Down syndrome mouse model. Exp Neurol 2009;216:278-89.

    [81] Bialowas-McGoey LA, Lesicka A, Whitaker-Azmitia PM. Vitamin E increases S100B-mediated microglial activation in an S100B-overexpressing mouse model of pathological aging. Glia 2008;56:1780-90.

    [82] Bianchi P, Ciani E, Contestabile A, Guidi S, Bartesaghi R. Lithium restores neurogenesis in the subventricular zone of the Ts65Dn mouse, a model for Down syndrome.Brain Pathol DOI: 10.1111/j.1750-3639.2008.00246.x.(2009).

    [83] Clark S, Schwalbe J, Stasko MR, Yarowsky PJ, Costa AC. Fluoxetine rescues deficient neurogenesis in hippocampus of the Ts65Dn mouse model for Down syndrome. Exp Neurol 2006;200:256-61.

    [84] Toso L, Cameroni I, Roberson R, Abebe D, Bissell S, Spong CY. Prevention of developmental delays in a Down syndrome mouse model. Obstet.Gynecol 2008;112:1242-51.

    [85] Holland AJ, Hon J, Huppert FA, Stevens F. Incidence and course of dementia in people with Down's syndrome: findings from a population-based study. J Intellect Disabil Res 2000;44 ( Pt 2):138-46.

    [86] Holland AJ, Hon J, Huppert FA, Stevens F, Watson P. Population-based study of the prevalence and presentation of dementia in adults with Down's syndrome. Br J Psychiatry 1998;172:493-8.

    [87] Coppus A, Evenhuis H, Verberne GJ, Visser F, van Gool P, Eikelenboom P, et al. Dementia and mortality in persons with Down's syndrome. J Intellect Disabil Res 2006;50:768-77.

    [88] Rovelet-Lecrux A, Hannequin D, Raux G, Le Meur N,Laquerriere A, Vital A, et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet 2006;38:24-6.

    [89] Sleegers K, Brouwers N, Gijselinck I, Theuns J,Goossens D, Wauters J, et al. APP duplication is sufficient to cause early onset Alzheimer's dementia with cerebral amyloid angiopathy. Brain 2006;129:2977-83.

    [90] Cabrejo L, Guyant-Marechal L, Laquerriere A,Vercelletto M, De la Fourniere F, Thomas-Anterion C,et al. Phenotype associated with APP duplication in five families. Brain 2006;129:2966-76.

    [91] Hunter CL, Bimonte HA, Granholm AC. Behavioral comparison of 4 and 6 month-old Ts65Dn mice: agerelated impairments in working and reference memory.Behav. Brain Res 2003;138:121-31.

    [92] Salehi A, Delcroix JD, Belichenko PV, Zhan K, Wu C,Va;;etta JS, et al. Increased App expression in a mouse model of Down's syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron 2006;51:29-42.

    [93] Granholm AC, Sanders LA, Crnic LS. Loss of cholinergic phenotype in basal forebrain coincides with cognitive decline in a mouse model of Down's syndrome. Exp Neurol 2000;161:647-63.

    [94] Necchi D, Lomoio S, Scherini E. Axonal abnormalities in cerebellar Purkinje cells of the Ts65Dn mouse. Brain Res 2008;1238:181-8.

    [95] Seo H, Isacson O. Abnormal APP, cholinergic and cognitive function in Ts65Dn Down's model mice. Exp Neurol 2005;193:469-80.

    [96] Cataldo AM, Barnett JL, Pieroni C, Nixon RA.Increased neuronal endocytosis and protease delivery to early endosomes in sporadic Alzheimer's disease:neuropathologic evidence for a mechanism of increased beta-amyloidogenesis. J Neurosci 1997;17:6142-51.

    [97] Cataldo AM, Petanceska S, Peterhoff CM, Terio NB,Epstein CJ, Villar A, et al. App gene dosage modulates endosomal abnormalities of Alzheimer's disease in a segmental trisomy 16 mouse model of Down syndrome.J Neurosci 2003;23:6788-92.

    [98] Cataldo AM, Mathews PM, Boiteau AB, Hassinger LC,Peterhoff CM, Jiang Y, et al. Down syndrome fibroblast model of Alzheimer-related endosome pathology:accelerated endocytosis promotes late endocytic defects.Am J Pathol 2008;173:370-84.

    [99] Cooper JD, Salehi A, Delcroix JD, Howe CL, Belichenko PV, Chua-Couzens J, et al. Failed retrograde transport of NGF in a mouse model of Down's syndrome: reversal of cholinergic neurodegenerative phenotypes following NGF infusion. PNAS 2001;98:10439-44.

    [100] Jiang Y, Mullaney KA, Peterhoff CM, Che S, Schmidt SD, Boyer-Boiteau A, et al. Alzheimer's-related endosome dysfunction in Down syndrome is Abetaindependent but requires APP and is reversed by BACE-1 inhibition. PNAS 2010;107:1630-5.

    [101] Chang KT, Min KT. Upregulation of three Drosophila homologs of human chromosome 21 genes alters synaptic function: implications for Down syndrome.PNAS 2009;106:17117-22.

    [102] Ryoo SR, Jeong HK, Radnaabazar C, Yoo JJ,Cho HJ, Lee HW, et al. DYRK1A-mediated hyperphosphorylation of Tau. A functional link between Down syndrome and Alzheimer disease. J Biol Chem 2007;282:34850-7.

    [103] Ryoo SR, Cho HJ, Lee HW, Jeong HK, Radnaabazar C, Kim YS, et al. Dual-specificity tyrosine (Y)-phosphorylation regulated kinase 1A-mediated phosphorylation of amyloid precursor protein: evidence for a functional link between Down syndrome and Alzheimer's disease. J Neurochem 2008;104:1333-44.

    [104] Shukkur EA, Shimohata A, Akagi T, Yu W, Yamaguchi M, Murayama M, et al. Mitochondrial dysfunction and tau hyperphosphorylation in Ts1Cje, a mouse model for Down syndrome. Hum Mol Genet 2006;15: 2752-62.

    [105] Liu F, Liang Z, Wegiel J, Hwang YW, Iqbal K, Grundke-Iqbal I, et al. Overexpression of Dyrk1A contributes to neurofibrillary degeneration in Down syndrome. FASEB J 2008;22:3224-33.

    [106] Woods YL, Cohen P, Becker W, Jakes R, Goedert M, Wang X, et al. The kinase DYRK phosphorylates protein-synthesis initiation factor eIF2Bepsilon at Ser539 and the microtubule-associated protein tau at Thr212:potential role for DYRK as a glycogen synthase kinase 3-priming kinase. Biochem J 2001;355:609-15.

    [107] Wang Y, Gao L, Tse SW, Andreadis A. Heterogeneous nuclear ribonucleoprotein E3 modestly activates splicing of tau exon 10 via its proximal downstream intron, a hotspot for frontotemporal dementia mutations. Gene 2010;451:23-31.

    [108] Lomoio S, Scherini E, Necchi D. Beta-amyloid overload does not directly correlate with SAPK/JNK activation and tau protein phosphorylation in the cerebellar cortex of Ts65Dn mice. Brain Res 2009;1297:198-206.

    [109] Smigielska-Kuzia J, Sobaniec W, Kulak W, Bockowski L. Clinical and EEG features of epilepsy in children and adolescents in Down syndrome. J Child Neurol 2009;24:416-20.

    [110] Cortez MA, Shen L, Wu Y, Aleem IS, Trepanier CH, Sadeghnia HR, et al. Infantile spasms and Down syndrome: a new animal model. Pediatr Res 2009;65:499-503.

    [111] Scott RM, Smith ER. Moyamoya disease and moyamoya syndrome. N Engl J Med 2009;360:1226-37.

    [112] Fukushima Y, Kondo Y, Kuroki Y, Miyake S, Iwamoto H, Sekido K, et al. Are Down syndrome patients predisposed to Moyamoya disease? Eur J Pediatr 1986;144:516-7.

    [113] Ramakrishna N, Meeker HC, Li S, Brown WT, Rao R,El Idrissi A. Upregulation of beta-catenin expression in Down syndrome model Ts65Dn mouse brain.Neuroscience 2009;161:451-8.

    [114] Vorbrodt AW, Li S, Brown WT, Ramakrishna N. Increased expression of beta-catenin in brain microvessels of a segmentally trisomic (Ts65Dn) mouse model of Down syndrome. Brain Cell Biol 2008;36:203-11.

    [115] Ruby NF, Fernandez F, Zhang P, Klima J, Heller HC,Garner CC. Circadian locomotor rhythms are normal in Ts65Dn "down syndrome" mice and unaffected by pentylenetetrazole. J Biol Rhythms 2010;25:63-6.

    [116] Martinez-Cue C, Baamonde C, Lumbreras M, Paz J,Davisson MT, Schmidt C, et al. Differential effects of environmental enrichment on behavior and learning of male and female Ts65Dn mice, a model for Down syndrome. Behav Brain Res 2002;134:185-200.

    [117] Stewart RE, Woodhouse JM, Cregg M, Pakeman VH. Association between accommodative accuracy,hypermetropia, and strabismus in children with Down's syndrome. Optom Vis Sci 2007;84:149-55.

    [118] Izraeli S, Rainis L, Hertzberg L, Smooha G, Birger Y.Trisomy of chromosome 21 in leukemogenesis. Blood Cells Mol Dis 2007;39:156-9.

    [119] Malinge S, Ben Abdelali R, Settegrana C, Radford-Weiss I, Debre M, Beldjord K, et al. Novel activating JAK2 mutation in a patient with Down syndrome and B-cell precursor acute lymphoblastic leukemia. Blood 2007;109:2202-4.

    [120] Chou ST, Opalinska JB, YaoY, Fernandes MA, Kalota A, Brooks JS, et al. Trisomy 21 enhances human fetal erythro-megakaryocytic development. Blood 2008;112:4503-6.

    [121] Tunstall-Pedoe O, Roy A, Karadimitris A, de la Fuente J,Fisk NM, Bennett P, et al. Abnormalities in the myeloid progenitor compartment in Down syndrome fetal liver precede acquisition of GATA1 mutations. Blood 2008;112:4507-11.

    [122] Groet J, McElwaine S, Spinelli M, Rinaldi A, Burtscher I, Mulligan C, et al. Acquired mutations in GATA1 in neonates with Down's syndrome with transient myeloid disorder. Lancet 2003;361:1617-20.

    [123] Stepensky P, Brooks R, Waldman E, Revel-Vilk S,Izraeli S, Resnick I, et al. A rare case of GATA1 negative chemoresistant acute megakaryocytic leukemia in an 8-month-old infant with trisomy 21. Pediatr Blood Cancer , DOI: 10.1002/pbc.22331.(2010)

    [124] Sato T, Toki T, Kanezaki R, Xu G, Terui K, Kanegane H,et al. Functional analysis of JAK3 mutations in transient myeloproliferative disorder and acute megakaryoblastic leukaemia accompanying Down syndrome. Br J Haematol 2008;141:681-8.

    [125] Klusmann JH, Reinhardt D, Hasle H, Kaspers GJ,Creutzig U, Hahlen K, et al. Janus kinase mutations in the development of acute megakaryoblastic leukemia in children with and without Down's syndrome. Leukemia 2007;21:1584-7.

    [126] Kiyoi H, Yamaji S, Kojima S, Naoe T. JAK3 mutations occur in acute megakaryoblastic leukemia both in Down syndrome children and non-Down syndrome adults.Leukemia 2007;21:574-6.

    [127] Walters DK, Mercher T, Gu TL, O'Hare T, Tyner JW,Loriaux M, et al. Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell 2006;10:65-75.

    [128] De Vita S, Mulligan C, McElwaine S, Dagna-Bricarelli F, Spinelli M, Basso G, et al. Loss-of-function JAK3 mutations in TMD and AMKL of Down syndrome. Br J Haematol 2007;137:337-41.

    [129] Gaikwad A, Rye CL, Devidas M, Heerema NA, Carroll AJ, Izraeli S, et al. Prevalence and clinical correlates of JAK2 mutations in Down syndrome acute lymphoblastic leukaemia. Br J Haematol 2009;144:930-2.

    [130] Hertzberg L, Vendramini E, Ganmore I, Cazzaniga G, Schmitz M, Chalker J, et al. Down syndrome acute lymphoblastic leukemia, a highly heterogeneous disease in which aberrant expression of CRLF2 is associated with mutated JAK2: a report from the International BFM Study Group. Blood 2010;115:1006-17.

    [131] Russell LJ, Capasso M, Vater I, Akasaka T, Bernard OA, Calasanz MJ, et al. Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B-cell precursor acute lymphoblastic leukemia. Blood 2009;114:2688-98.

    [132] Mullighan CG, Collins-Underwood JR, Phillips LA,Loudin MG, Liu W, Zhang J, et al. Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia.Nat Genet 2009;41:1243-6.

    [133] Ng AP, Hyland CD, Metcalf D, Carmichael CL,Loughran SJ, Di Rago L, et al. Trisomy of Erg is required for myeloproliferation in a mouse model of Down syndrome. Blood DOI 10.1182/blood-2009-09-242107.(2009)

    [134] Lutterbach B, Hiebert SW. Role of the transcription factor AML-1 in acute leukemia and hematopoietic differentiation. Gene 2000;245:223-35.

    [135] Okuda T, van Deursen J, Hiebert SW, Grosveld G,Downing JR. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 1996;84:321-30.

    [136] Edwards H, Xie C, LaFiura KM, Dombkowski AA, Buck SA, Boerner JL, et al. RUNX1 regulates phosphoinositide 3-kinase/AKT pathway: role in chemotherapy sensitivity in acute megakaryocytic leukemia. Blood 2009;114:2744-52.

    [137] Carmichael CL, Majewski IJ, Alexander WS, Metcalf D, Hilton DJ, Hewitt CA, et al. Hematopoietic defects in the Ts1Cje mouse model of Down syndrome. Blood 2009;113:1929-37.

    [138] Alford K, Slender A, Vanes L, Li Z, Fisher EM,NizeticD, et al. Perturbed hematopoiesis in the Tc1 mouse model of Down Syndrome. Blood, In press.

    [139] Kirsammer G, Jilani S, Liu H, Davis E, Gurbuxani S,Le Beau MM, et al. Highly penetrant myeloproliferative disease in the Ts65Dn mouse model of Down syndrome.Blood 2008;111:767-75.

    [140] Yang Q, Rasmussen SA, Friedman J M. Mortality associated with Down's syndrome in the USA from 1983 to 1997: a population-based study. Lancet 2002;359:1019-25.

    [141] Sussan TE, Yang A, Li F, Ostrowski MC, Reeves RH.Trisomy represses Apc(Min)-mediated tumours in mouse models of Down's syndrome. Nature 2008;451:73-5.

    [142] Baek KH, Zaslavsky A, Lynch RC, Britt C, Okada Y, Siarey RJ, et al. Down's syndrome suppression of tumour growth and the role of the calcineurin inhibitor DSCR1. Nature 2009;459:1126-30.

    [143] Delom F, Burt E, Hoischen A, Veltman J, Groet J,Cotter FE, et al. Transchromosomic cell model of Down syndrome shows aberrant migration, adhesion and proteome response to extracellular matrix. Proteome Sci 2009;7: 31.

    [144] Maslen CL, Babcock D, Robinson SW, Bean LJ, Dooley KJ, Willour VL, et al. CRELD1 mutations contribute to the occurrence of cardiac atrioventricular septal defects in Down syndrome. Am J Med Genet A 2006;140:2501-5.

    [145] Moore CS. Postnatal lethality and cardiac anomalies in the Ts65Dn Down syndrome mouse model. Mamm.Genome 2006:17:1005-12.

    校园人妻丝袜中文字幕| 欧美日韩视频精品一区| 丝袜人妻中文字幕| 十八禁人妻一区二区| av在线观看视频网站免费| 人体艺术视频欧美日本| 大话2 男鬼变身卡| 精品国产乱码久久久久久男人| 亚洲国产精品999| 80岁老熟妇乱子伦牲交| 纯流量卡能插随身wifi吗| 亚洲国产欧美日韩在线播放| 国产精品蜜桃在线观看| 老熟女久久久| 日韩成人av中文字幕在线观看| 国产99久久九九免费精品| 久久精品国产综合久久久| 国产乱来视频区| 久久精品国产a三级三级三级| 国产xxxxx性猛交| 亚洲男人天堂网一区| 亚洲成人av在线免费| 久久精品亚洲av国产电影网| 免费不卡黄色视频| 久久久久久久精品精品| 免费日韩欧美在线观看| 欧美成人精品欧美一级黄| 悠悠久久av| 99久久人妻综合| av线在线观看网站| 伊人久久国产一区二区| 久久国产精品男人的天堂亚洲| 精品国产一区二区三区四区第35| 亚洲精品美女久久久久99蜜臀 | 国产欧美日韩一区二区三区在线| 国产又色又爽无遮挡免| 日韩熟女老妇一区二区性免费视频| 国产福利在线免费观看视频| 日本色播在线视频| 亚洲av福利一区| 午夜福利视频精品| 亚洲欧美日韩另类电影网站| 国产xxxxx性猛交| 大陆偷拍与自拍| 国产熟女午夜一区二区三区| 操出白浆在线播放| av片东京热男人的天堂| 欧美日韩视频高清一区二区三区二| 日韩免费高清中文字幕av| 欧美 亚洲 国产 日韩一| 国产精品蜜桃在线观看| 亚洲,欧美,日韩| 亚洲中文av在线| 国产在线视频一区二区| 色网站视频免费| 母亲3免费完整高清在线观看| 欧美在线一区亚洲| 少妇被粗大猛烈的视频| 中文字幕最新亚洲高清| 久久精品亚洲熟妇少妇任你| 久久久久国产精品人妻一区二区| 在线观看www视频免费| 国产一级毛片在线| 亚洲国产欧美日韩在线播放| 久久 成人 亚洲| 无限看片的www在线观看| 女人被躁到高潮嗷嗷叫费观| 国产精品久久久人人做人人爽| 丝袜美腿诱惑在线| av在线观看视频网站免费| 女人精品久久久久毛片| 天堂8中文在线网| 日韩欧美精品免费久久| 亚洲美女搞黄在线观看| 欧美黑人欧美精品刺激| 免费观看av网站的网址| 精品国产乱码久久久久久小说| av片东京热男人的天堂| 中文字幕最新亚洲高清| 婷婷色综合www| 少妇 在线观看| 天天躁夜夜躁狠狠躁躁| 亚洲国产看品久久| 亚洲精品美女久久av网站| 国产av精品麻豆| 色精品久久人妻99蜜桃| 成人黄色视频免费在线看| 久久久久国产一级毛片高清牌| 日韩大片免费观看网站| 国产人伦9x9x在线观看| 啦啦啦中文免费视频观看日本| 一级毛片我不卡| 女性被躁到高潮视频| 建设人人有责人人尽责人人享有的| 国产一级毛片在线| 人人妻,人人澡人人爽秒播 | 欧美人与性动交α欧美软件| 一级a爱视频在线免费观看| 水蜜桃什么品种好| 亚洲精品中文字幕在线视频| 丝瓜视频免费看黄片| 一区福利在线观看| 在线精品无人区一区二区三| 国产伦人伦偷精品视频| 色精品久久人妻99蜜桃| 欧美日韩成人在线一区二区| 色婷婷av一区二区三区视频| 亚洲情色 制服丝袜| a级毛片黄视频| 国产一级毛片在线| 99国产精品免费福利视频| av.在线天堂| 亚洲色图 男人天堂 中文字幕| 亚洲国产中文字幕在线视频| 一区二区三区乱码不卡18| 女的被弄到高潮叫床怎么办| 亚洲国产精品999| 欧美激情高清一区二区三区 | 国产精品一二三区在线看| 日韩制服丝袜自拍偷拍| 国产淫语在线视频| 国产成人一区二区在线| 人体艺术视频欧美日本| 久久性视频一级片| 性少妇av在线| 美女扒开内裤让男人捅视频| av一本久久久久| 最近手机中文字幕大全| 精品卡一卡二卡四卡免费| 中文乱码字字幕精品一区二区三区| 亚洲五月色婷婷综合| 久久久久久久国产电影| 国产一区有黄有色的免费视频| 亚洲精品美女久久av网站| 国产精品 国内视频| 在线观看免费午夜福利视频| 十八禁人妻一区二区| 一级毛片 在线播放| 制服人妻中文乱码| 欧美国产精品va在线观看不卡| 韩国高清视频一区二区三区| av在线app专区| 亚洲精华国产精华液的使用体验| 天天添夜夜摸| 国产精品成人在线| 国产成人啪精品午夜网站| 久久国产亚洲av麻豆专区| 久久久久网色| 国产精品久久久久久精品古装| 日韩 欧美 亚洲 中文字幕| 日韩熟女老妇一区二区性免费视频| 午夜av观看不卡| 夫妻午夜视频| 一二三四在线观看免费中文在| 日本91视频免费播放| 美女中出高潮动态图| 久久精品人人爽人人爽视色| 操出白浆在线播放| 欧美日韩视频高清一区二区三区二| 国产片特级美女逼逼视频| 狠狠精品人妻久久久久久综合| 免费黄频网站在线观看国产| 精品酒店卫生间| 婷婷色麻豆天堂久久| 欧美少妇被猛烈插入视频| 下体分泌物呈黄色| 亚洲av在线观看美女高潮| 国产免费又黄又爽又色| 美女高潮到喷水免费观看| 欧美在线一区亚洲| 爱豆传媒免费全集在线观看| 在现免费观看毛片| 搡老岳熟女国产| av网站免费在线观看视频| 国产激情久久老熟女| 美国免费a级毛片| 日韩制服丝袜自拍偷拍| 宅男免费午夜| 国产一区二区三区综合在线观看| 亚洲七黄色美女视频| 久久精品久久久久久噜噜老黄| 男女高潮啪啪啪动态图| 不卡av一区二区三区| 日韩制服丝袜自拍偷拍| 亚洲国产精品999| 日韩人妻精品一区2区三区| 十分钟在线观看高清视频www| 亚洲国产欧美网| 女性被躁到高潮视频| 国产一区有黄有色的免费视频| 老司机影院毛片| 色吧在线观看| 一区二区三区乱码不卡18| 女人高潮潮喷娇喘18禁视频| 久久女婷五月综合色啪小说| 亚洲国产av新网站| 热re99久久国产66热| 中文字幕制服av| 欧美黄色片欧美黄色片| 免费观看人在逋| 少妇的丰满在线观看| 丝袜脚勾引网站| 日本欧美视频一区| 波野结衣二区三区在线| 精品一区二区三区四区五区乱码 | 伊人亚洲综合成人网| av网站在线播放免费| 在现免费观看毛片| 日韩精品免费视频一区二区三区| 久久99一区二区三区| 夫妻午夜视频| 亚洲熟女毛片儿| 另类亚洲欧美激情| 丝袜人妻中文字幕| 91老司机精品| 精品人妻一区二区三区麻豆| 黄色视频不卡| 国产精品秋霞免费鲁丝片| 黄色怎么调成土黄色| 飞空精品影院首页| 在线天堂中文资源库| 只有这里有精品99| 亚洲国产精品一区三区| 天堂俺去俺来也www色官网| 尾随美女入室| 日韩精品有码人妻一区| 美国免费a级毛片| 国产精品香港三级国产av潘金莲 | 久久久亚洲精品成人影院| 久久久久视频综合| a 毛片基地| 少妇被粗大的猛进出69影院| 精品免费久久久久久久清纯 | 国产伦人伦偷精品视频| 国产亚洲欧美精品永久| a级毛片黄视频| 青春草视频在线免费观看| 国产女主播在线喷水免费视频网站| 可以免费在线观看a视频的电影网站 | 高清av免费在线| 免费在线观看视频国产中文字幕亚洲 | 日本av免费视频播放| 最近中文字幕高清免费大全6| 高清在线视频一区二区三区| 母亲3免费完整高清在线观看| 青青草视频在线视频观看| 亚洲精品国产av蜜桃| 久久天躁狠狠躁夜夜2o2o | 亚洲av在线观看美女高潮| 亚洲人成电影观看| 欧美日韩精品网址| 制服丝袜香蕉在线| 日日爽夜夜爽网站| 18禁观看日本| 成人免费观看视频高清| 精品国产一区二区久久| 久久热在线av| 久久久久久久大尺度免费视频| 亚洲中文av在线| 最近最新中文字幕免费大全7| 中文字幕精品免费在线观看视频| 80岁老熟妇乱子伦牲交| 日韩av不卡免费在线播放| 精品国产国语对白av| 欧美老熟妇乱子伦牲交| 欧美国产精品一级二级三级| 精品人妻一区二区三区麻豆| 操出白浆在线播放| 亚洲国产欧美日韩在线播放| 日韩av不卡免费在线播放| 一本久久精品| 五月开心婷婷网| av一本久久久久| 国产欧美日韩一区二区三区在线| 啦啦啦 在线观看视频| 亚洲熟女精品中文字幕| 热re99久久国产66热| 三上悠亚av全集在线观看| 啦啦啦 在线观看视频| 看非洲黑人一级黄片| 久久影院123| 日韩 亚洲 欧美在线| 女人被躁到高潮嗷嗷叫费观| 欧美在线黄色| 性高湖久久久久久久久免费观看| 亚洲欧美成人综合另类久久久| 午夜免费鲁丝| 亚洲欧美精品综合一区二区三区| 男女午夜视频在线观看| 亚洲精品美女久久av网站| 午夜日本视频在线| 欧美另类一区| 老司机在亚洲福利影院| 涩涩av久久男人的天堂| 久久久国产精品麻豆| 在线观看免费日韩欧美大片| 黑人猛操日本美女一级片| av女优亚洲男人天堂| 国产成人系列免费观看| 欧美精品一区二区大全| 久久ye,这里只有精品| 丰满饥渴人妻一区二区三| 亚洲美女搞黄在线观看| 女人久久www免费人成看片| 日本一区二区免费在线视频| 国产av国产精品国产| 建设人人有责人人尽责人人享有的| 久久精品熟女亚洲av麻豆精品| 男女免费视频国产| 极品人妻少妇av视频| 卡戴珊不雅视频在线播放| 亚洲精品在线美女| 秋霞伦理黄片| 亚洲欧美一区二区三区黑人| 色婷婷av一区二区三区视频| 亚洲精品久久午夜乱码| 一边摸一边做爽爽视频免费| a级片在线免费高清观看视频| 国产极品天堂在线| 我的亚洲天堂| 啦啦啦啦在线视频资源| 亚洲第一青青草原| 欧美日韩视频精品一区| 亚洲自偷自拍图片 自拍| 人妻一区二区av| 亚洲成国产人片在线观看| 一区二区三区激情视频| 女性生殖器流出的白浆| www.熟女人妻精品国产| 人人妻,人人澡人人爽秒播 | 三上悠亚av全集在线观看| 国产在线免费精品| 操美女的视频在线观看| 国产老妇伦熟女老妇高清| 午夜免费男女啪啪视频观看| 观看av在线不卡| 99久久99久久久精品蜜桃| 亚洲精品久久成人aⅴ小说| 超色免费av| 国产成人免费无遮挡视频| 丝袜喷水一区| 国产精品 国内视频| av国产精品久久久久影院| 亚洲国产成人一精品久久久| 国产一卡二卡三卡精品 | av片东京热男人的天堂| 久久精品亚洲熟妇少妇任你| 午夜福利,免费看| 操出白浆在线播放| 高清欧美精品videossex| 日本91视频免费播放| 国产成人精品久久久久久| www.熟女人妻精品国产| 国产欧美日韩一区二区三区在线| 老司机影院毛片| 亚洲免费av在线视频| 高清欧美精品videossex| 男女无遮挡免费网站观看| 国产极品天堂在线| 在现免费观看毛片| 国产成人一区二区在线| 亚洲一级一片aⅴ在线观看| 老司机在亚洲福利影院| 久热这里只有精品99| 青草久久国产| 亚洲成人手机| avwww免费| 别揉我奶头~嗯~啊~动态视频 | 久久国产精品大桥未久av| 亚洲免费av在线视频| 午夜日韩欧美国产| 久久精品国产a三级三级三级| 国产免费福利视频在线观看| 欧美少妇被猛烈插入视频| 一区二区三区激情视频| 国产在线免费精品| 99久久精品国产亚洲精品| 久久精品亚洲熟妇少妇任你| 精品国产一区二区三区四区第35| 日韩av在线免费看完整版不卡| 天美传媒精品一区二区| 九九爱精品视频在线观看| 欧美xxⅹ黑人| 黄色怎么调成土黄色| 国产淫语在线视频| 99精品久久久久人妻精品| 午夜激情av网站| 性高湖久久久久久久久免费观看| 亚洲欧洲国产日韩| 老司机在亚洲福利影院| 赤兔流量卡办理| 婷婷色综合大香蕉| 婷婷色综合www| 成人午夜精彩视频在线观看| 日韩一本色道免费dvd| 狂野欧美激情性xxxx| 热re99久久国产66热| 超碰97精品在线观看| 亚洲国产毛片av蜜桃av| 精品福利永久在线观看| 搡老乐熟女国产| 亚洲av在线观看美女高潮| 国产免费福利视频在线观看| 制服人妻中文乱码| 丝袜喷水一区| 日韩 亚洲 欧美在线| 欧美激情 高清一区二区三区| 婷婷色综合大香蕉| av电影中文网址| 考比视频在线观看| 99香蕉大伊视频| 美国免费a级毛片| 成人午夜精彩视频在线观看| 一区在线观看完整版| 国产精品嫩草影院av在线观看| 黄片小视频在线播放| 色婷婷av一区二区三区视频| 日韩一区二区三区影片| av有码第一页| 国产成人啪精品午夜网站| 天天躁夜夜躁狠狠躁躁| 日韩av在线免费看完整版不卡| av卡一久久| 精品一区二区三卡| 久久精品久久久久久噜噜老黄| 悠悠久久av| 视频在线观看一区二区三区| 一边摸一边抽搐一进一出视频| 国产av码专区亚洲av| 日韩成人av中文字幕在线观看| 午夜福利视频在线观看免费| 纵有疾风起免费观看全集完整版| 午夜免费鲁丝| 两个人免费观看高清视频| 别揉我奶头~嗯~啊~动态视频 | 男女边摸边吃奶| 久久国产亚洲av麻豆专区| 一区福利在线观看| 日韩制服骚丝袜av| 韩国av在线不卡| 成人毛片60女人毛片免费| 久久 成人 亚洲| 两个人免费观看高清视频| 成人国产av品久久久| 国产精品久久久久成人av| 1024香蕉在线观看| 男女边吃奶边做爰视频| 老熟女久久久| 国产黄频视频在线观看| 不卡av一区二区三区| 国产在线免费精品| 久久影院123| 欧美97在线视频| 国产精品亚洲av一区麻豆 | 如日韩欧美国产精品一区二区三区| av女优亚洲男人天堂| 精品人妻熟女毛片av久久网站| 午夜日韩欧美国产| 亚洲成人国产一区在线观看 | 国产精品三级大全| 国产深夜福利视频在线观看| 亚洲精品日韩在线中文字幕| 国产1区2区3区精品| 蜜桃在线观看..| 各种免费的搞黄视频| 超碰97精品在线观看| 最近最新中文字幕大全免费视频 | 日本av手机在线免费观看| 国产精品久久久人人做人人爽| 国产亚洲欧美精品永久| 国产在线一区二区三区精| 母亲3免费完整高清在线观看| 日韩欧美精品免费久久| 国产精品.久久久| 综合色丁香网| 久久久久精品人妻al黑| 欧美日韩视频高清一区二区三区二| 欧美变态另类bdsm刘玥| 久久久久精品国产欧美久久久 | 精品国产一区二区久久| 男人爽女人下面视频在线观看| 日韩熟女老妇一区二区性免费视频| 国产精品三级大全| 亚洲av成人不卡在线观看播放网 | 蜜桃在线观看..| 久久久久国产一级毛片高清牌| 18禁观看日本| 国产熟女午夜一区二区三区| 久久人人爽人人片av| 免费高清在线观看日韩| 亚洲欧洲日产国产| 久久人人97超碰香蕉20202| 90打野战视频偷拍视频| 久久这里只有精品19| 丰满乱子伦码专区| 在线观看人妻少妇| 又大又黄又爽视频免费| 国产精品久久久久久久久免| 制服诱惑二区| 一级黄片播放器| 成人毛片60女人毛片免费| 免费在线观看视频国产中文字幕亚洲 | 亚洲第一青青草原| 国产精品 欧美亚洲| h视频一区二区三区| 免费久久久久久久精品成人欧美视频| 国产免费又黄又爽又色| 亚洲综合色网址| 国产色婷婷99| 色综合欧美亚洲国产小说| 少妇精品久久久久久久| bbb黄色大片| 韩国高清视频一区二区三区| 狠狠婷婷综合久久久久久88av| 好男人视频免费观看在线| 国产毛片在线视频| 亚洲精品国产一区二区精华液| 飞空精品影院首页| av在线观看视频网站免费| 中文字幕精品免费在线观看视频| 欧美最新免费一区二区三区| 国产av国产精品国产| 亚洲男人天堂网一区| 午夜久久久在线观看| 国产免费又黄又爽又色| av又黄又爽大尺度在线免费看| 国产日韩欧美亚洲二区| 日本wwww免费看| 国产亚洲一区二区精品| 18在线观看网站| 一级a爱视频在线免费观看| 丝袜美腿诱惑在线| 咕卡用的链子| 人体艺术视频欧美日本| 亚洲综合精品二区| 在线看a的网站| 美女国产高潮福利片在线看| 天堂中文最新版在线下载| 亚洲精品日本国产第一区| av网站免费在线观看视频| 一级a爱视频在线免费观看| 十八禁人妻一区二区| 免费看av在线观看网站| av福利片在线| 人人妻,人人澡人人爽秒播 | 母亲3免费完整高清在线观看| 亚洲欧美激情在线| 99久久精品国产亚洲精品| 国产一卡二卡三卡精品 | 欧美激情极品国产一区二区三区| 欧美日韩av久久| 视频区图区小说| 精品国产一区二区三区四区第35| 啦啦啦视频在线资源免费观看| 伊人亚洲综合成人网| 日韩制服丝袜自拍偷拍| 久久ye,这里只有精品| 美女脱内裤让男人舔精品视频| 亚洲精品成人av观看孕妇| 亚洲伊人久久精品综合| 黄片小视频在线播放| 日韩欧美精品免费久久| 亚洲一码二码三码区别大吗| a级毛片黄视频| 亚洲,一卡二卡三卡| av有码第一页| 精品国产国语对白av| 欧美日韩综合久久久久久| 一级毛片我不卡| 国产av码专区亚洲av| 五月天丁香电影| 男的添女的下面高潮视频| 欧美日韩精品网址| 满18在线观看网站| 欧美日韩精品网址| 视频在线观看一区二区三区| 一区二区三区激情视频| 一区在线观看完整版| 亚洲图色成人| 一级毛片 在线播放| 国产日韩欧美在线精品| 欧美另类一区| 深夜精品福利| 9191精品国产免费久久| 高清黄色对白视频在线免费看| 欧美精品亚洲一区二区| 丝袜人妻中文字幕| 在线观看www视频免费| 男人操女人黄网站| 国产一级毛片在线| 99香蕉大伊视频| 亚洲图色成人| 亚洲av男天堂| 欧美av亚洲av综合av国产av | 超碰97精品在线观看| 成人国产麻豆网| 国产免费又黄又爽又色| 国产精品三级大全| 国产不卡av网站在线观看| 中国国产av一级| 中文字幕人妻丝袜一区二区 | 亚洲精华国产精华液的使用体验| 国产精品女同一区二区软件| 欧美黑人欧美精品刺激| 综合色丁香网| 日韩熟女老妇一区二区性免费视频| 少妇猛男粗大的猛烈进出视频| 国产在线免费精品| av国产久精品久网站免费入址| 国产高清不卡午夜福利| 高清欧美精品videossex| 一级片免费观看大全| 久久久久久免费高清国产稀缺| 极品人妻少妇av视频| 在线观看免费视频网站a站|