• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Determination of Transport Properties for Dilute Gas Mixtures Involving Carbon Tetrafluoride

    2010-02-14 08:25:48MohammadMehdiPapariJalilMoghadasiSoodabehNikmaneshandMahmoodRezaDehghan

    Mohammad Mehdi Papari*, Jalil Moghadasi, Soodabeh Nikmanesh and Mahmood Reza Dehghan

    1 INTRODUCTION

    Many attempts have been made to obtain the forces between molecules, as they are important in determining the physical and chemical properties of matters. The results of kinetic and statistical-mechanical theories provide theoretical expression for various equilibrium and non-equilibrium properties in terms of the potential energy of interaction between molecules [1, 2]. Therefore, the evaluation of such quantities from a known pair-potential energy function is not especially difficult. For these reasons, one of the central objectives of chemical physics of gases has been and remains the expression of bulk thermophysical properties in terms of molecular quantities. In such a description, chemical physicist seeks to relate characteristics of the bulk gas, such as viscosity, to the properties of individual molecules that makeup the gas and the intermolecular potential between them.

    A very precise extended principle of corresponding states has been formulated for the noble gases and eleven polyatomic gases at low density [3, 4]. It has been proved that it is capable of correlating equilibrium and transport properties of noble gases, eleven polyatomic gases and their multi-component mixture,over a wide temperature range, with an accuracy commensurate to the best measurements [5]. The principle seeks the maximum use of theory and experiment that can be obtained without assumptions about the functional form of the pair interaction potential.

    Experimental information on the pair interaction potential can be extracted from a study of any process that involves collisions between molecules. Of particular value is the development of an inversion technique for bulk properties, which are readily available for a wide variety of substances. The inversion scheme is an important method for generating the intermolecular potentials from the bulk properties and their corresponding state correlation. Among the bulk properties, transport properties and especially viscosity are among the important sources for the extraction of information about the intermolecular potential energy.

    One can ask two questions about any set of measurements of a bulk property:

    (1) What specific information about pair-interaction does it contain?

    (2) How can the information be extracted directly?

    The inversion technique yields reliable answers to the aforesaid questions [6-20]. The first inversion of viscosity data was due to Dymond [21], who used a method based on the one devised by Hirschfelder and Eliason [22] for calculating approximate transport properties economically.

    The direct inversion method should serve two purposes: (1) to illustrate and test theoretical principles of kinetic theory of gases; and (2) to reproduce the reduced collision integrals and their dimensionless ratios, which are necessary and sufficient information to obtain transport properties of gases.

    The purpose of this paper is to generate effective pair potential energies using an iterative inversion method for CF4-CO2, CF4-N2, CF4-O2, CF4-CO, CF4-SF6, and CF4-CH4systems from corresponding state correlation of viscosity. The calculated potential energies have been employed to predict low density transport properties of the aforementioned systems. Employing Chapman-Enskog solution of the Boltzman equation[1], we compute the viscosities, diffusion coefficients and thermal diffusivities. Also the thermal conductivities are obtained through Vesovic’s method [23-26].

    2 TRANSPORT COEFFICIENTS

    The Chapman-Enskog solution of the Boltzmann transport equation [1] supplies expressions for the transport properties of pure gases and their multi-component mixtures at low densities in terms of collision integrals represented by(,)lsΩ . Here, the superscripts l and s appearing in Ω denote weighting factors that account for the transport mechanism by molecular collision. The collision integrals are related to the intermolecular forces by the following relations

    where θ is the scattering angle, Q(l)(E) is the transport collision integral, b is the impact parameter, E is the relative kinetic energy of colliding partners, w is the relative velocity of colliding molecules, rmis the closest approach of two molecules, and kBT is the molecular thermal energy. Hence, the potential u(r)would serve as the input information required in calculating collision integrals and, consequently, the transport properties.

    Fundamentally, transport coefficients describe the process of relaxation to equilibrium from a state perturbed by application of temperature, pressure, density,and velocity or composition gradients. Its importance revolves around the fact that the knowledge of transport properties of materials is crucial in an immense variety of engineering design calculations.

    According to the kinetic theory of gases, the viscosity (η) and diffusion coefficient (D) of single substances in term of collision integrals are

    The collision diameter σ is defined as the separation distance when the intermolecular potential function is equal to zero, ρ is the number density and m is the molecular mass. In the above equations the reduced collision integral Ω*(l,s)and the collision integral ratios A*, B*, C*, E*and F*may be defined as

    For the viscosity of mixtures

    Diffusion in multi-component mixtures is entirely described in terms of the binary diffusion coefficients Dij

    where p is the pressure and Δijis a higher order correction term of the binary diffusion coefficient, which can be defined as

    The expression for the thermal diffusivity of a binary mixture is

    where kTis a higher order correction term for the thermal diffusivity. This term is usually negligible compared with experimental uncertainties in αT. The other quantities in Eq. (21) are

    Interchanging subscripts 1 and 2 in the expressions of S1and Q1, we have S2and Q2. The sign convention for αTrequires that subscript 1 denotes the heavier component. In the basic development of the Chapman-Enskog theory, only binary elastic collisions between the molecules are considered and molecules are supposed to be without internal degrees of freedom. Since the internal degrees of freedom of polyatomic molecules involve transporting energy in gases,this theory can not be applied to calculate the thermal conductivity.

    The thermal conductivity of a multi-component polyatomic gas mixture at zero density can be expressed in the form analogous to that for a mixture consisting of monatomic species namely [26]:

    where xiis the mole fraction of species i and the symbol λ∞indicates the full formal first-order kinetic theory result obtained by means of expansion in Thijsse basis vectors [27]. The resulting expressions for the elements of the determinants, Lij, were first derived by Ross et al. [24] and with complicated functions of the effective cross-sections, so they had little value for practical evaluation of thermal conductivity.It was shown for pure polyatomic gases [23],atom-diatom mixtures [24] and atom-molecule mixtures [25] that accurate and relatively simple expressions can be obtained by means of the Thijsse approximation [27], which identifies the total energy as the dominant factor in determining thermal conductivity.

    The Thijsse approximation has been applied to polyatomic systems [27] and the resulting expressions for elements Lijare written in terms of, at least in principle, measurable quantities rather than effective cross-sections. Nevertheless, the resulting expressions still require a knowledge of too many quantities,namely diffusion and relaxation of internal energy for different species, which are not readily available or in some cases impossible to obtain by experimental means alone. Thus, it was felt that in order to provide practical means for calculating thermal conductivity a further set of approximations had to be made. Hence,all the quantities in the expressions for the elements Lijwere replaced by their spherical limits [26]. This rather heuristic approximation was based entirely on the results obtained for an atom-molecule mixture where expressions for thermal conductivity based on the analogous spherical approximation were shown to predict experimental values to within a few percent[26]. Following the application of Thijsse and spherical approximations to the full results, the relevant determinant elements Lijare given by

    where λqis the thermal conductivity of pure molecular spec0ies q, λqq′is the interaction thermal conductivity, cpqis the ideal-gas isobaric heat capacity of q,R is the gas constant, and the quantities A*and B*are ratios of effective cross-sections given by Eqs. (9) and(10), respectively. In addition, yqis the mass ratio of species q, given by

    where Mqthe relative molecular weight of species q.The interaction thermal conductivity can be related to the more readily available viscosity,qqη′through the following expression

    Evaluation of the thermal conductivity of a multicomponent polyatomic gas mixture requires the knowledge of the thermal conductivity and the isobaric heat capacity of each of the pure species. This information is readily available for a large number of fluids as a function of temperature either in terms of correlations or directly from experimental information.Furthermore, three binary interaction parameters, namely,, are also required as a function of temperature. They can be calculated from the foregoing equations. It should be mentioned that because the viscosity and diffusion coefficients are concerned with transporting momentum and mass, respectively, and therefore do not involve an internal degree of freedom,the Chapman-Enskog theory retains in its useful form,but the collision integrals must be averaged over all possible relative orientations occurring in collisions[28]. Assuming that all relative orientations have equal probability, Monchick and Mason [28] have proposed a simplification of this treatment.

    3 DETERMINATION OF PAIR POTENTIAL ENERGY BY INVERTING THE VISCOSITY DATA

    The degree of success for extraction of information about the force from analyzing the bulk properties depends on the accuracy of both the measurements and theory connecting the force to macroscopic properties, and on the sensitivity of this connection. The inversion procedure is of considerable importance to obtain nonparametric interaction potential energy and transport properties. This scheme relives us of the variation of the selected multi parameter analytic equation parameters for the pair potential function so as to optimize the fit to a wide range of thermophysical data of a material.

    For molecules that interact with an inverse power potential, we can write

    where Cmis a constant having both positive and negative values, and r is inter-nuclear distance. It has been shown that for molecules that interact with an inverse power law there is a relation between temperature and r as below [29]For realistic potentials it is found that G varies with temperature in a complicated way, since the collisions have different energies and probe different parts of the potential function (which, in terms of the model, have different effective values of m). It is also found that the variation of G with temperature is very similar for all realistic potential functions [29] and we may write

    , where G0(T) is calculated by using an approximate potential function0()u r such as a LJ(l2-6) potential.

    The inversion technique is initiated by estimating G, an inversion function, from an initial model potential such as the LJ(l2-6). The inversion function is a function of the reduced temperature (T*) alone. We have estimated this function using the LJ(12-6) model as the initial model. Given a set of reduced viscosity coefficient collision integrals,(2,2)*Ω , over a wide range of reduced temperature from the extended law of corresponding states [5] on the one hand, and estimating the G function from initial model potential LJ(12-6) on the other, it is possible to transform a pair of data () to u/ε versus r/σ on the potential energy curve using Eqs. (32) and (35). The details of the inversion procedure, which has been applied on the extended principle of corresponding sates [5], are given as a flow chart in Fig. 1.

    4 RESULTS AND DISCUSSION

    In this study, an iterative inversion procedure is used to infer the intermolecular pair interaction potential energies of aforementioned mixtures from corresponding state correlation for viscosity. Then, using the inverted pair potential energies along with Chapman-Enskog [1] version of the kinetic theory of gases together with the method proposed by Vesovic et al.[23-26], transport properties of studied gas mixtures with acceptable accuracies are computed. To perform the full inversion procedure, the experimental data should be extended over as wide a temperature range as possible. In this respect, a corresponding state correlation for viscosity collision integral is taken from Ref. [5] to calculate the reduced viscosity collision integral. As already mentioned in previous section, for each mixture, a two-iterative inversion procedure is applied to the calculated reduced viscosity collision integrals to generate isotropic and effective pair potential energies of respective systems. The inversion of viscosity collision integrals, to yield potential energy, requires experimental data over a wide range of temperature. Consequently, to integrate Eqs.(1)-(3) over the given range,u(r) should be extrapolated in the long-range region (low temperature). The long-range part ofu(r) has the following form

    Figure 1 Flow chart of the iteration steps in the inversion method

    Table 1 Least-squares coefficients, correlation coefficients (R2), and standard errors (Es) for Eq. (37)

    Table 2 Least-squares coefficients, correlation coefficients (R2), and standard errors (Es) for Eq. (38)

    The effects ofC8andC10on the transport properties are so small that we ignore them in our calculations.The value ofC6is estimated from the low-temperature viscosity data using Eq. (36). Thus the effective potential energies obtained from the inversion method are used to perform the integration over the whole range and, in turn, to evaluate the improved collision integrals over the given range. The calculated collision integrals are correlated with the following polynomial equations

    Parameters in the above equations, correlation coefficients,R2, and standard errors,Es, are listed in Tables 1 and 2.

    The measurements of the viscosity are more practical and accurate than the measurements of the other transport properties, so the respective collision integrals are expected to be more reliable than the others. In this respect, we use the accurate viscosity to predict other transport properties. The required values of scaling parametersσandεare taken from Ref. [5].

    The expressions provided by the Chapman-Enskog version of the kinetic theory together with the calculated collision integrals obtained from the inverted potential energies are employed to calculate viscosities, diffusion coefficients and thermal diffusivities of the aforementioned mixtures.

    Figures 2 and 3 demonstrate the deviations of the calculated viscosity values of afore-cited mixtures from those reported in Refs. [30] and [31] at different temperatures and mole fractions. The calculated viscosities agree with experimental values within 1%.Unfortunately, lacking of experimental data, we can not compare the obtained viscosity of CF4-CO mixture with the measured ones.

    Figure 2 Deviations of calculated viscosity values of gaseous CF4 mixtures gaseous from those reported in Ref. [30]at different temperatures and mole fractions

    In addition, the comparison of the calculated viscosities with those calculated from Davidson’s [32]and Reichenberg’s methods [33] are shown in Fig. 4.The errors of the calculated viscosities coefficients are at most ±1.7% in comparison with those estimated using Davidson’s method [32] and within ±1% when is compared with the ones computed from Rechenberg’s method [33].

    Figure 3 Deviations of calculated viscosity valuesof CF4-CH4 and CF4-SF6 gaseous systems from those reported in Refs. [31] and [31], respectively, at different temperatures and mole fractions ◆ 0; ■ 0.2; ▲ 0.4; ● 0.6; ◇ 0.8; □ 16 △ 0.1765; ○ 0.2608; + 0.3499; ☆ 0.398;0.5741;0.5887;0.7487; × 0.7552

    Figure 4 The comparison of the calculated viscosities of carbon tetrafluoride mixtures with Refs. [32], [33]compared with Ref. [32]: ◆ +CO2; ■ +N2; ▲ +O2; ● +CO;◇ + SF6; □ + CH4compared with Ref. [33]: △ +CO2; ○ +N2; + +O2; ☆ +CO;+SF6;+CH4

    Eventually, we have correlated the calculated interaction viscosities of our mixtures with the following function

    where01η= μPa·s and01T= K. Parameters in the above equation are allowed to vary for all the systems using non-linear least squares method and listed in Table 3. The correlation coefficients,R2, and standard errors,Es, for each case are also included.

    Figure 5 shows how the calculated diffusioncoefficients of aforesaid systems deviate from those given in [30, 31, 34]. The accuracy of this property is of the order of 4%.

    Table 3 Least squares coefficients, correlation coefficients (R2), and standard errors (Es) for Eq. (39)

    Figure 5 Deviations for diffusion coefficients at different temperatures for carbon tetrafluoride with Refs. [30], [31], [34]compared with Ref. [30]: ◆ + CO2; ■ + N2; ▲ + O2;◇ + SF6;□ + CH4compared with Ref. [31]: ○ + CH4compared with Ref. [34]: △ + CH4

    Also the values of diffusion coefficients are correlated with the following equation

    wherep0= 0 .1 MPa, andD0= 1 cm2·2s-1. ConstantsaD,bD,cD, correlation coefficients,R, and standard errors,Es, are shown in Table 4.

    Thermal diffusivities for all systems are calculated and fitted into the following equation

    The related constants, correlation coefficients and standard errors are reported in Table 5. Unfortunately,lacking of literature data for thermal diffusivity, we can not evaluate the accuracies of our work.

    In the case of thermal conductivity, the predicted viscosities obtainedviathe inverted pair potential energies are employed to predict thermal conductivities using Eqs. (25)-(29). The calculated interaction thermal conductivities are correlated with the following polynomial

    The parameters of Eq. (42) are listed in Table 6.

    Typically, the calculated thermal conductivity ofCF4-CH4mixture is compared with those given in Ref.[35] (Fig. 6). The maximum deviations are within ±5%.

    Table 4 Least-squares coefficients, correlation coefficients (R2), and standard errors (Es) for Eq. (40)

    Table 5 Least squares coefficients, correlation coefficients and standard errors for Eq. (41)

    Table 6 Least squares coefficients, correlation coefficients and standard errors for Eq. (42)

    Figure 6 Deviations for the thermal conductivity of CF4-CH4 mixture at temperature 303 K and different mole fractions compared with those given in Ref. [35]

    5 CONCLUSIONS

    The most important benefit of the present work is that knowing the intermolecular forces from inversion of corresponding states of viscosity, we are able to calculate other useful property of the gas, at any temperature and thereby relieve ourselves of the need to measure it. The inversion method is advancement over the traditional approaches that consider a potential function with several parameters and try to adjust them using experimental results.

    The reasonable agreement between the calculated transport properties and those given in literature demonstrates the ability of the inversion scheme.

    ACKNOWLEDGEMENTS

    The authors express to Research Committees of Shiraz University of Technology and Shiraz University,their sincere thanks due to supporting this project and making computer facilities available

    NOMENCLATURE

    A*ratio of collision integrals

    aD,aα,aη,aλ,a1,a2constant

    B*ratio of collision integrals

    bimpact factor, m

    bD,bα,bη,bλ,b1,b2constant

    C6induced dipole-induced dipole dispersion coeffi

    cient, J·m6

    C8induced quadrupole-induced dipole dispersion coef

    ficient, J·m8

    C10induced quadrupole-induced quadrupole dispersion

    coefficient, J·m10

    C*ratio of collision integralscD,cα,cη,c1,c2constant

    ideal-gas isobaric heat capacity ofq

    Dijbinary diffusion coefficient, m2·s-1

    dα,dη,dλ,d1,d2constant

    Esstandard error

    E*ratio of collision integrals

    eαconstant

    F*ratio of collision integrals

    fDhigher order correction factor for diffusion

    fαconstant

    fηhigher order correction factor for viscosity

    Ginversion function

    hPlank’s constant, J·s

    kBBoltzman constant, J·K-1

    kThigher order correction term for thermal diffusivity

    mmolecular mass, kg

    ppressure, Pa

    Q(l)transport cross-section, m2

    Rgas constant, J·mol-1·K-1

    R2correlation coefficient

    rintermolecular distance, m

    rmclosest approach of two molecule, m

    Ttemperature, K

    T*reduced temperature

    u(r) intermolecular potential energy, J

    wrelative velocity of colliding molecules

    xmole fraction

    Δ12higher order correction term for diffusion coefficient

    εenergy-scaling factor, J

    ηijinteraction viscosity, Pa·s

    ηmixmixture viscosity, Pa·s

    θscattering angle, rad

    interaction thermal conductivity

    λ∞mixture thermal conductivity, W·m-1·K-1

    μreduced mass

    vnumber of components in the mixture

    σlength-scaling factor, m

    Ω(l,s)collision integral, m2

    Ω*(l,s)reduced collision integral

    Superscripts

    l,sweighting factors related to the mechanism of transport by molecular collisions

    * reduced

    Subscripts

    Ddiffusion coefficient

    αthermal diffusivity

    ηviscosity

    λthermal conductivity

    1 Chapman, S., Cowling, T., The Mathematical Theory of Non-Uniform Gases, 3rd edition, Cambridge University Press, UK (1964).

    2 Hirschfelder, J.O., Curtis, C.F., Bird, B.R., Molecular Theory of Gases and Liquids, John- Wiley, New York (1964).

    3 Najafi, B., Mason, E.A., Kestin, J., “Improved corresponding state principle for the noble gases”,Physica, 119A, 387-440 (1983).

    4 Boushehri, A., Bzowski, J., Kestin, J., Mason, L.A., “Equilibrium and transport properties of the eleven polyatomic gases at low density”,J.Phys.Chem.Ref.Data, 16, 445-466 (1987).

    5 Bzowski, J., Kestin, J., Mason, E.A., Uribe, F.J., “Equilibrium and transport properties of gas mixtures at low density: Eleven polyatomic gases and five noble gases”,J.Phys.Chem.Ref.Data, 19,1179-1232 (1990).

    6 Clancy, P., Gough, D.W., Mathews, G.P., Smith, E.B., Maitland, G.C.,“Simplified methods for the inversion of thermophysical data”,Mol.Phys., 30, 1397-1407 (1975).

    7 Maitland, G.C., Wakeham, W.A., “Direct determination of intermolecular potentials from gaseous transport coefficients alone”,Mol.Phys., 35, 1429-1442 (1978).

    8 Cox, H.E., Crawford, F.W., Smith, E.B., Tindle, A.R., “A complete iterative inversion procedure for second virial coefficient data (I)The method”, Mol. Phys., 40, 705-712 (1980).

    9 Smith, E.B., Tindell, A.R., “Gas-phase properties and forces in van der Waals molecules”, Faraday Discus Chem. Soc., 73, 221-233 (1982).

    10 Maitland, G.C., Vesovic, V., Wakeham, W.A., “The inversion of thermophysical properties (I) Spherical systems revisited”, Mol.Phys., 54, 287-300 (1985).

    11 Smith, E.B., Tindell, A.R., Wells, B.H., “The determination of intermolecular forces between polyatomic molecules by the inversion of thermophysical properties”, High Temp. High Press., 17, 53-59(1985).

    12 Monchick, L., “A comment on the inversion of gas transport properties”, J. Chem. Phys., 73, 2929-2931 (1980).

    13 Smith, E.B., Tildesley, D.J., Tindell, A.R., Price, S.L., “On the inversion of thermophysical properties generated from anisotropic potential energy functions”, Chem. Phys. Lett., 74, 193-195 (1980).

    14 Ghatee, M.H., Papari, M.M., Boushehri, A., “Direct calculation of CH4-He interaction potential from the extended principle of corresponding states”, Bull. Chem. Soc. Jpn., 70, 2643-2646 (1997).

    15 Papari, M.M., Boushehri, A., “Semi-empirical calculation of the transport properties of eight binary gas mixtures at low density by the inversion method”, Bull. Chem. Soc. Japan, 71, 2757-2767(1998).

    16 Papari, M.M., “Transport properties of carbon dioxide from an isotopic and effective pair potential energy”, Chem. Phys., 288, 249-259(2003).

    17 Moghadasi, J., Papari, M.M., Nekoie, A., Sengers, J.V., “Transport properties of some polyatomic gases from isotropic and effective pair potential energies (part II)”, Chem. Phys., 306, 229-240 (2004).

    18 Papari, M.M., Mohammad-Aghaie, D., Haghighi, B., Boushehri, A.,“Transport properties of argon-hydrogen gaseous mixture from an effective unlike interaction”, Fluid Phase Equilib., 232, 122-135(2005).

    19 Moghadasi, J., Mohammad-Aghaie, D., Papari, M.M., “Predicting gas transport coefficients of alternative refrigerant mixtures”, Ind.Eng. Chem. Res., 45, 9211-9223 (2006).

    20 Moghadasi, J., Papari, M.M., Mohammad-Aghaie, D., Campo, A.,“Gas transport coefficients of light hydrocarbons. Halogenated methane and ethane as candidate for new refrigerants”, Bull. Chem.Soc. Jpn., 81, 220-234 (2008).

    21 Dymond, J.H., “Repulsive potential-energy curves for the rare-gas atoms”, J. Chem. Phys., 49, 3673-3678 (1968).

    22 Hirschfelder, J.O., Eliason, M.A., “The estimation of the transport properties for electronically excited atoms and molecules”, Ann. N. Y.Acad. Sci., 67, 451-459 (1975).

    23 Millat, J., Vesovic, V., Wakeham, W.A., “On the validity of the simplified expression for the thermal conductivity of Thijsse et-all”,Physica A., 148, 153-164 (1988).

    24 Ross, M.J., Vesovic, V., Wakeham, W.A., “Alternative expressions for the thermal conductivity of dilute gas mixtures”, Physica A , 183,519-536 (1992).

    25 Vesovic, V., Wakeham, W.A., “Practical accurate expressions for the thermal conductivity of atom diatom gas mixtures”, Physica A., 201,501-514 (1993).

    26 Schreiber, M., Vesovic, V., Wakeham, W.A., “Thermal conductivity of multicomponent polyatomic dilute gas mixtures”, Int. J. Thermophys., 18, 925-938 (1997).

    27 Thijsse, B.J., Hooft, G.W., Coombe, DA., Knnap, H.F.P., Beenakker,J.J.M., “Some simplified expressions for the thermal conductivity in an external field”, Physica A., 98, 307-312 (1979).

    28 Monchick, L., Mason, E.A., “Transport properties of polar gases”, J.Chem. Phys., 35, 1676-1697 (1961).

    29 Rigby, M., Smith, E.B., Wakeham, W.A., Maitland, G.C., The Forces Between Molecules, Oxford University Press, USA (1992).

    30 Kestin, J., Khalifa, H.E., Ro, S.T., Wakeham, W.A., “The viscosity and diffusion coefficients of eighteen binary gaseous systems”,Physica A, 88, 242-260 (1977).

    31 Gough, D.W. Matthews, G.P., Smith, E.B., “Viscosity of nitrogen and certain gaseous mixtures at low temperatures”, J. Chem. Soc.Faraday Trans., 72, 645-653 (1976).

    32 Davidson, T.A., “A simple and accurate method for calculating viscosity of gaseous mixtures”, U.S. Bureau of Mines, RI9456 (1993).

    33 Reichenberg, D., “New simplified methods for the estimation of the viscosities of gas mixtures at moderate pressures”, Natl. Eng. Lab.Rept. Chem. 53, East Kilbride, Glasgow, Scotland (1977).

    34 Clifford, A.A., Dickinson, E., Matthews, G.P., Smith, E.B., “Testing intermolecular potential functions using transport property data”, J.Chem. Soc. Faraday Trans., 72, 2917-2922 (1976).

    35 Clifford, A.A., Dickinson, E., Gray, P., “Thermal conductivities of gaseous alkane + perfluoroalkane mixtures”, J. Chem. Soc. Faraday Trans., 72, 1997-2006 (1976).

    久久精品国产亚洲av涩爱| 久久韩国三级中文字幕| 一二三四中文在线观看免费高清| 国产精品久久久久久av不卡| 久99久视频精品免费| 日韩一区二区三区影片| 国产日韩欧美在线精品| 少妇熟女aⅴ在线视频| 插逼视频在线观看| 日本午夜av视频| 久久久久久久久久黄片| 青春草亚洲视频在线观看| 国产免费视频播放在线视频 | 搞女人的毛片| 网址你懂的国产日韩在线| 亚洲第一区二区三区不卡| 国产爱豆传媒在线观看| 美女主播在线视频| 国产亚洲最大av| 在线观看美女被高潮喷水网站| 美女内射精品一级片tv| 成人av在线播放网站| 简卡轻食公司| 直男gayav资源| 99久久精品一区二区三区| 久久精品国产亚洲av涩爱| 夜夜看夜夜爽夜夜摸| 只有这里有精品99| 国产成人免费观看mmmm| 日本av手机在线免费观看| 最近中文字幕高清免费大全6| 午夜福利在线观看吧| 国产精品久久久久久精品电影小说 | 一个人观看的视频www高清免费观看| 一本一本综合久久| 亚洲精品国产av蜜桃| 午夜精品一区二区三区免费看| 伦精品一区二区三区| 99视频精品全部免费 在线| 久久精品人妻少妇| 精品一区二区免费观看| or卡值多少钱| 成年人午夜在线观看视频 | 夫妻性生交免费视频一级片| 日产精品乱码卡一卡2卡三| 亚洲伊人久久精品综合| 欧美日韩视频高清一区二区三区二| 午夜福利视频1000在线观看| 嘟嘟电影网在线观看| 国产高清三级在线| 三级经典国产精品| 91aial.com中文字幕在线观看| 日韩欧美三级三区| 国产精品久久久久久av不卡| 亚洲成人一二三区av| 夜夜爽夜夜爽视频| 色网站视频免费| 午夜日本视频在线| 午夜激情久久久久久久| 中文乱码字字幕精品一区二区三区 | 亚洲无线观看免费| 亚洲av日韩在线播放| 深夜a级毛片| 国产极品天堂在线| 久久久成人免费电影| 国产精品一及| 欧美另类一区| 中文乱码字字幕精品一区二区三区 | 久久久久久久久中文| 成人美女网站在线观看视频| 国产精品不卡视频一区二区| 天天躁夜夜躁狠狠久久av| 日韩中字成人| 最近视频中文字幕2019在线8| 日本一二三区视频观看| 亚洲图色成人| 久久久久免费精品人妻一区二区| 永久免费av网站大全| 黄片wwwwww| 欧美另类一区| 国产成人aa在线观看| 丝瓜视频免费看黄片| 久久久久久久久中文| 亚洲电影在线观看av| 亚洲国产精品sss在线观看| 国产精品人妻久久久影院| 免费大片18禁| 久久人人爽人人片av| 久久久久久久久久久丰满| 波多野结衣巨乳人妻| 伦理电影大哥的女人| 精品人妻偷拍中文字幕| 免费不卡的大黄色大毛片视频在线观看 | 亚洲国产最新在线播放| 免费看日本二区| 免费观看精品视频网站| 日本-黄色视频高清免费观看| 日韩中字成人| 两个人视频免费观看高清| 人妻少妇偷人精品九色| 中文字幕人妻熟人妻熟丝袜美| 色5月婷婷丁香| 午夜福利网站1000一区二区三区| 亚洲欧洲国产日韩| 亚洲av电影在线观看一区二区三区 | 久久人人爽人人爽人人片va| 在线观看免费高清a一片| 三级国产精品片| 黄色欧美视频在线观看| 成人毛片60女人毛片免费| 草草在线视频免费看| 国产精品精品国产色婷婷| 亚洲国产最新在线播放| 午夜久久久久精精品| 国产成人精品福利久久| 日韩欧美精品v在线| 久久久精品94久久精品| 国产人妻一区二区三区在| 国产在视频线在精品| 欧美激情久久久久久爽电影| 日韩中字成人| 午夜福利视频精品| 男人狂女人下面高潮的视频| 国产人妻一区二区三区在| 99热这里只有是精品50| freevideosex欧美| 在线观看免费高清a一片| 久久草成人影院| 日韩视频在线欧美| 亚洲电影在线观看av| 国产精品蜜桃在线观看| 日韩亚洲欧美综合| a级毛色黄片| 久久国内精品自在自线图片| 高清欧美精品videossex| 国产片特级美女逼逼视频| 国产精品一区www在线观看| 久久6这里有精品| 激情 狠狠 欧美| 久久久久久国产a免费观看| 国产黄a三级三级三级人| 亚洲自偷自拍三级| 亚洲av成人精品一二三区| 日韩不卡一区二区三区视频在线| 亚洲欧美精品专区久久| 亚洲精品视频女| 免费看a级黄色片| 日本wwww免费看| 搡老妇女老女人老熟妇| 久久精品国产鲁丝片午夜精品| 肉色欧美久久久久久久蜜桃 | 亚洲欧洲日产国产| 女人被狂操c到高潮| 精品酒店卫生间| 一级毛片 在线播放| 在线免费十八禁| 天堂av国产一区二区熟女人妻| 国产精品不卡视频一区二区| 国产一级毛片在线| 男女那种视频在线观看| 日韩,欧美,国产一区二区三区| 天天躁夜夜躁狠狠久久av| 久久久久精品久久久久真实原创| 色综合亚洲欧美另类图片| 夫妻午夜视频| 最近视频中文字幕2019在线8| 欧美一区二区亚洲| 久久综合国产亚洲精品| 一级二级三级毛片免费看| 久久精品久久精品一区二区三区| 久久97久久精品| 久久韩国三级中文字幕| 大香蕉97超碰在线| 男人和女人高潮做爰伦理| 欧美成人精品欧美一级黄| 国产又色又爽无遮挡免| 日产精品乱码卡一卡2卡三| 综合色av麻豆| 超碰97精品在线观看| 91精品一卡2卡3卡4卡| 日韩av不卡免费在线播放| 九色成人免费人妻av| 精品一区二区三区视频在线| 天堂网av新在线| 精品熟女少妇av免费看| 亚州av有码| 最后的刺客免费高清国语| 日韩 亚洲 欧美在线| 国产 一区 欧美 日韩| 久久久久久久久久人人人人人人| 日本wwww免费看| 免费观看无遮挡的男女| 精品久久久久久久久久久久久| 白带黄色成豆腐渣| 国产永久视频网站| 夫妻午夜视频| 免费黄色在线免费观看| kizo精华| 欧美日韩在线观看h| 欧美一区二区亚洲| 久热久热在线精品观看| 成人亚洲精品一区在线观看 | 国产成人a∨麻豆精品| 久久久久久久大尺度免费视频| 国产探花极品一区二区| 街头女战士在线观看网站| 美女xxoo啪啪120秒动态图| 久久久久性生活片| 成年版毛片免费区| 久久久成人免费电影| 毛片一级片免费看久久久久| 99久久人妻综合| 国产精品一区二区三区四区免费观看| 丰满人妻一区二区三区视频av| 午夜精品在线福利| 乱码一卡2卡4卡精品| 永久网站在线| 搡老乐熟女国产| 国产视频内射| 成人亚洲精品一区在线观看 | 国产亚洲av嫩草精品影院| 久久久a久久爽久久v久久| 亚洲av日韩在线播放| 床上黄色一级片| 精品人妻熟女av久视频| av在线亚洲专区| 国产真实伦视频高清在线观看| 两个人视频免费观看高清| 别揉我奶头 嗯啊视频| 国产有黄有色有爽视频| 国产精品人妻久久久影院| 麻豆成人午夜福利视频| 一个人看视频在线观看www免费| 91aial.com中文字幕在线观看| 18禁在线播放成人免费| 国产69精品久久久久777片| 国产午夜精品一二区理论片| 日韩欧美精品v在线| 亚洲精品久久午夜乱码| 男人狂女人下面高潮的视频| 美女cb高潮喷水在线观看| 亚洲国产成人一精品久久久| 精品人妻偷拍中文字幕| 欧美一区二区亚洲| 亚洲欧美中文字幕日韩二区| 精品久久久久久久人妻蜜臀av| 免费看a级黄色片| 91在线精品国自产拍蜜月| 又爽又黄a免费视频| 永久免费av网站大全| 五月玫瑰六月丁香| 99久久精品国产国产毛片| 建设人人有责人人尽责人人享有的 | 日韩在线高清观看一区二区三区| 黄片wwwwww| 国语对白做爰xxxⅹ性视频网站| 亚洲三级黄色毛片| 深夜a级毛片| 亚洲婷婷狠狠爱综合网| 80岁老熟妇乱子伦牲交| 又大又黄又爽视频免费| 麻豆成人午夜福利视频| 久久精品国产鲁丝片午夜精品| 日本免费在线观看一区| 久久久久久久午夜电影| 久久精品夜色国产| 亚洲久久久久久中文字幕| 波多野结衣巨乳人妻| 亚洲电影在线观看av| 精品国产三级普通话版| 搡老乐熟女国产| 国产不卡一卡二| 日韩,欧美,国产一区二区三区| 熟女电影av网| 亚洲国产欧美在线一区| 成人av在线播放网站| 国产伦一二天堂av在线观看| 久久久久精品久久久久真实原创| 嫩草影院入口| 嘟嘟电影网在线观看| 国产精品.久久久| 精品午夜福利在线看| 国产成人aa在线观看| 中文资源天堂在线| 久久精品人妻少妇| 嫩草影院精品99| or卡值多少钱| 国产黄片视频在线免费观看| 最近中文字幕高清免费大全6| 欧美另类一区| 男人和女人高潮做爰伦理| 久久午夜福利片| 日韩大片免费观看网站| 97超视频在线观看视频| 亚洲国产欧美在线一区| 日韩成人av中文字幕在线观看| 国产视频首页在线观看| 欧美三级亚洲精品| 搞女人的毛片| 亚洲欧美成人精品一区二区| 九草在线视频观看| 欧美日本视频| 国产成人精品福利久久| 国产高清不卡午夜福利| 国产探花在线观看一区二区| 久久鲁丝午夜福利片| 精品少妇黑人巨大在线播放| 久久精品国产亚洲av涩爱| 国产精品一区二区在线观看99 | 蜜桃久久精品国产亚洲av| 国产一区二区三区综合在线观看 | 久久久久久九九精品二区国产| 国产精品无大码| 免费观看a级毛片全部| 亚洲熟妇中文字幕五十中出| 亚洲高清免费不卡视频| 精品欧美国产一区二区三| 国产在线一区二区三区精| 亚洲欧美一区二区三区黑人 | 亚洲精品色激情综合| 秋霞在线观看毛片| 在线天堂最新版资源| 亚洲最大成人av| 亚洲久久久久久中文字幕| 日韩欧美 国产精品| 视频中文字幕在线观看| 国产色婷婷99| 亚洲av福利一区| 国产精品一及| 国产爱豆传媒在线观看| 国产亚洲最大av| 国产一区有黄有色的免费视频 | 好男人视频免费观看在线| 少妇熟女aⅴ在线视频| 久久久精品欧美日韩精品| 成人综合一区亚洲| 国产精品一区二区三区四区久久| 免费少妇av软件| 我的女老师完整版在线观看| 中文在线观看免费www的网站| 精品国产三级普通话版| 国产久久久一区二区三区| 91av网一区二区| 人妻系列 视频| 亚洲精品aⅴ在线观看| 久久午夜福利片| 国内精品一区二区在线观看| 精品国产露脸久久av麻豆 | 中国美白少妇内射xxxbb| 国产精品三级大全| 99久久精品一区二区三区| 久久人人爽人人爽人人片va| 可以在线观看毛片的网站| 97超视频在线观看视频| 天堂网av新在线| 日韩三级伦理在线观看| 成人美女网站在线观看视频| 久久人人爽人人爽人人片va| 亚洲不卡免费看| 欧美bdsm另类| 亚洲精品国产av蜜桃| 亚洲成人中文字幕在线播放| 中文字幕制服av| 久久国产乱子免费精品| 如何舔出高潮| 少妇丰满av| 午夜福利成人在线免费观看| 日本色播在线视频| 女的被弄到高潮叫床怎么办| 免费观看a级毛片全部| 又爽又黄无遮挡网站| 国产三级在线视频| 嘟嘟电影网在线观看| 少妇人妻一区二区三区视频| 亚洲av不卡在线观看| 国产一区二区三区av在线| 麻豆av噜噜一区二区三区| 亚洲真实伦在线观看| 国产乱来视频区| 汤姆久久久久久久影院中文字幕 | 免费观看在线日韩| 中文乱码字字幕精品一区二区三区 | 99九九线精品视频在线观看视频| 国产午夜精品论理片| av在线天堂中文字幕| 色5月婷婷丁香| 深爱激情五月婷婷| 日本熟妇午夜| 午夜福利视频精品| 夫妻性生交免费视频一级片| 日本一二三区视频观看| 日韩欧美 国产精品| 人妻少妇偷人精品九色| 汤姆久久久久久久影院中文字幕 | 成人毛片60女人毛片免费| 久久久久网色| 中文字幕av成人在线电影| 狂野欧美白嫩少妇大欣赏| 国产黄色免费在线视频| 日本黄色片子视频| 国产一区二区在线观看日韩| 亚洲国产精品国产精品| 日韩欧美三级三区| 成人综合一区亚洲| 精品一区在线观看国产| 中文资源天堂在线| 成人午夜高清在线视频| 亚洲成色77777| 观看美女的网站| 黄色欧美视频在线观看| 精品久久久久久电影网| 嘟嘟电影网在线观看| 91久久精品电影网| 欧美日韩国产mv在线观看视频 | 啦啦啦中文免费视频观看日本| 又黄又爽又刺激的免费视频.| 深夜a级毛片| 国产人妻一区二区三区在| 成人亚洲精品一区在线观看 | 免费黄频网站在线观看国产| eeuss影院久久| 亚洲最大成人手机在线| 亚洲色图av天堂| 国产视频首页在线观看| 免费人成在线观看视频色| 热99在线观看视频| 99久国产av精品| 亚洲激情五月婷婷啪啪| 在线免费十八禁| 高清午夜精品一区二区三区| av卡一久久| 精品少妇黑人巨大在线播放| av在线天堂中文字幕| 久久这里有精品视频免费| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品美女特级片免费视频播放器| 免费看a级黄色片| 久久久久久久大尺度免费视频| 菩萨蛮人人尽说江南好唐韦庄| 99热这里只有是精品50| or卡值多少钱| 女人久久www免费人成看片| 国语对白做爰xxxⅹ性视频网站| 我的老师免费观看完整版| 亚洲欧美一区二区三区国产| 亚洲成人中文字幕在线播放| 中文字幕人妻熟人妻熟丝袜美| 午夜激情久久久久久久| 91狼人影院| 国产成人a∨麻豆精品| 免费观看av网站的网址| 少妇人妻精品综合一区二区| 亚洲成人中文字幕在线播放| 国产 一区 欧美 日韩| 麻豆国产97在线/欧美| 91狼人影院| 性插视频无遮挡在线免费观看| 国产有黄有色有爽视频| 美女脱内裤让男人舔精品视频| 亚洲婷婷狠狠爱综合网| 国产高潮美女av| 国产亚洲一区二区精品| 精品国产三级普通话版| 国产探花在线观看一区二区| 免费看美女性在线毛片视频| .国产精品久久| 亚洲精品日本国产第一区| 蜜臀久久99精品久久宅男| 欧美 日韩 精品 国产| 亚洲国产av新网站| 日韩视频在线欧美| 在线观看美女被高潮喷水网站| 精品少妇黑人巨大在线播放| 欧美成人一区二区免费高清观看| 成人毛片a级毛片在线播放| 啦啦啦啦在线视频资源| 高清日韩中文字幕在线| 国产成人午夜福利电影在线观看| 欧美zozozo另类| 老司机影院毛片| 丰满少妇做爰视频| 中文字幕av成人在线电影| 国产麻豆成人av免费视频| 婷婷色综合大香蕉| 成人美女网站在线观看视频| 免费大片18禁| 国产精品久久久久久久电影| 一级黄片播放器| 亚洲精品成人久久久久久| 亚洲不卡免费看| 九色成人免费人妻av| 精品少妇黑人巨大在线播放| 禁无遮挡网站| 国产精品国产三级专区第一集| 欧美极品一区二区三区四区| 午夜激情久久久久久久| 免费看光身美女| 美女cb高潮喷水在线观看| 神马国产精品三级电影在线观看| 丝瓜视频免费看黄片| 有码 亚洲区| 中文资源天堂在线| 一级毛片我不卡| 男女啪啪激烈高潮av片| 99久国产av精品| 日韩三级伦理在线观看| 欧美人与善性xxx| 久久久久九九精品影院| 亚洲精品,欧美精品| 丝瓜视频免费看黄片| 精品久久久久久久久av| 岛国毛片在线播放| 在线免费十八禁| 美女主播在线视频| 青春草视频在线免费观看| 亚洲精品久久午夜乱码| 亚洲av日韩在线播放| 亚洲精品中文字幕在线视频 | 内地一区二区视频在线| 国产精品三级大全| 白带黄色成豆腐渣| 色综合站精品国产| 女人久久www免费人成看片| 麻豆成人午夜福利视频| 看非洲黑人一级黄片| 国产色婷婷99| 一区二区三区四区激情视频| 边亲边吃奶的免费视频| 欧美日韩亚洲高清精品| 亚洲国产欧美在线一区| 久久鲁丝午夜福利片| 亚洲综合精品二区| 大话2 男鬼变身卡| 日韩 亚洲 欧美在线| 亚洲真实伦在线观看| 91久久精品国产一区二区成人| 青春草国产在线视频| 大话2 男鬼变身卡| 99热6这里只有精品| 欧美日韩在线观看h| 久久精品国产亚洲av天美| 91av网一区二区| 久久精品国产鲁丝片午夜精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一级毛片我不卡| 国产成人精品久久久久久| 日本欧美国产在线视频| 三级国产精品欧美在线观看| 国产精品一区www在线观看| 免费看a级黄色片| 九九爱精品视频在线观看| 国产精品一及| 国产伦精品一区二区三区四那| 嫩草影院精品99| 免费大片黄手机在线观看| 嫩草影院新地址| 国产高清不卡午夜福利| 好男人在线观看高清免费视频| 精品人妻偷拍中文字幕| 女人被狂操c到高潮| 亚洲国产精品sss在线观看| 久久久久久久国产电影| 日本wwww免费看| 十八禁国产超污无遮挡网站| 777米奇影视久久| 91精品一卡2卡3卡4卡| av在线播放精品| 久久久久久久久久久免费av| 亚洲婷婷狠狠爱综合网| av.在线天堂| 日韩 亚洲 欧美在线| 色综合亚洲欧美另类图片| 国产午夜精品论理片| 一本一本综合久久| 国产黄频视频在线观看| 欧美97在线视频| 国产精品久久久久久av不卡| 日产精品乱码卡一卡2卡三| 亚洲人成网站高清观看| 免费观看无遮挡的男女| 婷婷色麻豆天堂久久| 国产高清三级在线| 欧美激情在线99| freevideosex欧美| 免费黄频网站在线观看国产| 国产高清有码在线观看视频| 国产爱豆传媒在线观看| 日韩欧美国产在线观看| 最近中文字幕高清免费大全6| 精品人妻偷拍中文字幕| 国产综合懂色| 久久97久久精品| 国产黄色免费在线视频| 亚洲在线自拍视频| 日日摸夜夜添夜夜爱| 亚洲精品久久久久久婷婷小说| 十八禁国产超污无遮挡网站| 国产高清有码在线观看视频| 久久热精品热| 观看免费一级毛片| 国产高清有码在线观看视频| 午夜日本视频在线| 又黄又爽又刺激的免费视频.| 丝袜美腿在线中文| 久久99精品国语久久久| 大又大粗又爽又黄少妇毛片口| 好男人视频免费观看在线| 欧美日韩在线观看h| 国产激情偷乱视频一区二区| 亚洲精品国产av成人精品| 97人妻精品一区二区三区麻豆| a级一级毛片免费在线观看| 精品久久久精品久久久| 黄片wwwwww| 日韩成人伦理影院|