• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    關(guān)于衛(wèi)星姿態(tài)確定非線性濾波算法的研究

    2010-01-25 01:30:26荊武興
    宇航學(xué)報(bào) 2010年12期
    關(guān)鍵詞:工程系哈爾濱工業(yè)大學(xué)東方紅

    黃 琳,荊武興

    (1.航天東方紅衛(wèi)星有限公司研發(fā)中心,北京100094;2.哈爾濱工業(yè)大學(xué),航天工程系,哈爾濱150001)

    0 Introduction

    Spacecraft attitude determination from a sequence of vector observations in gyro-equipped spacecraft has been intensively investigated and widely applied in practice[1-2].Thequaternion is a most popular attitude representation for the global attitude estimation,though it is not a minimal representation because of its four dimensions.Various methods are proposed to keep the normalization constraint that has to be addressed in quaternion filtering problems.In general these methods can be classified as constrained estimation scheme and unconstrained estimation scheme[3-5].The former scheme assumes the quaternion estimation error covariance matrix must be singular,and the central idea is to use a nonsingular representation(i.e.,quaternion)for a reference attitude and a three-component representation for the deviations from the reference.The latter scheme assumes no such singularity and treats the four components of the quaternion as independent,but it has to incorporate some special normalization stages.More details about the two schemes and their advantages/disadvantages have been given in[3-5].

    Nonlinear filtering algorithms have been used to estimate the quaternion and the gyro drift rate bias.Up to now,a number of attitude determination filters have been proposed,and some classical filters such as the multiplicative extended Kalman filter(MEKF[1]),the augmented extended Kalman filter(AEKF[6]),and the unscented Kalman quaternion filter(USQUE[7])have been widely accepted.The MEKF and the USQUE are typical constrained estimation filters,which are brought forward based on the EKF algorithm and the UKFalgorithm respectively.The AEKF is a typical unconstrained estimation filter which is proposed based on the EKFalgorithm.Recently,thesequential Monte-Carlo algorithms or the particle filtering methods[8]have been applied to spacecraft attitude determination.Cheng and Crassidis proposed a particle filter to determine the modified Rodrigues parameter(MRP)and the drift rate bias[9].However,the singularity associated with the MRP representation has to be addressed by frequently switching to an alternative set of MRPs or the quaternion,and also the ambiguity of the MRPhas to be addressed by using a so-called‘CONDMRP’solution.Moreover,the six-dimensional particle filter has to simultaneously observe several vectors and use a huge number of particles(as many as 2000,an impractical computation burden for current onboard computers).As a result,the filter is not satisfied.A different estimator is proposed by Oshman and Carmi[10],which consists of a quaternion particle filter(QPF)and a genetic algorithm(GA)embedded gyro bias maximum-likelihood estimator.The QPF is a numerical unconstrained estimator which works directly with a number of weighted quaternion particles,and it is able to completely avoid the problem of singularity.This is a remarkable advantage over the Kalman filter variants,because they have to propagate and update the quaternion estimation error covariancematrix.The quaternion ambiguity problem has also been eliminated by using a special regularization method.The bias estimation is temporarily decoupled from thequaternion estimation at each iteration.Genetic algorithms are introduced to search an optimal bias estimate from a maximumlikelihood cost function.The GA-embedded bias estimator is interlacing with the QPF,therefore the combined attitude determination filter is called by GA-QPF.The simulated results show this filter(even with 150 quaternion particles and a 200-element population for the bias estimator)can achieve a better performance with respect to several classical filters in the simulation cases where the initial quaternion estimate is uncertain.Nevertheless,the bias estimator seems sophisticated and over computing time consuming.Jiang et al propose a dual particle filter which includes an attitude particle filter and a bias particle filter[11].The proposed attitude particle filter uses two attitude representations,the quaternion and the generalized Rodrigues parameter(GRP[12]).The quaternion is used for initial quaternion particle sampling,time propagating,observation updating,and particle resampling,while the GRPis used for the computations of the mean and the covariance matrix and the rougheing of the resampled particles.A similar idea has been given in[9]also.However,the GRP ambiguity problem has been ignored in[11].The bias particle filter is the direct application of astandard particle filter(i.e.,bootstrap filter).Jiang et al[13]proposed a marginalized particle filter for spacecraft attitude determination,by applying the Rao-Blackwellisation technique to an approximated quaternion and bias estimation,where the bias vector is partitioned from the augmented state of quaternion and bias and assumed to be conditionally linear Gaussian.Therefore the used bias estimator is a Kalman filter in nature.However,the model approximation of the original nonlinear/non-Gaussian attitude determination problems destroy the normalization constraint of the quaternion propagation,and its uncertain influence has not been considered and investigated.Once again,the GRPambiguity problem has not been eliminated in this work.

    This paper proposes two novel attitude determination filters for a low-Earth satellite with a three-axis magnetometer(TAM)and a three-axis gyro(TAG).The two filters are modified from the GA-QPF and the DPF[11].Both filters take the QPF as their quaternion estimator,so that the frequent switching between the GRP and the quaternion is avoided for the particle attitude filter of[11],whereas the QPF given in this paper uses a slightly different quaternion particle resampling and regularizing methods.The main difference between the twofilters is using different bias estimators.Onefilter uses an auxiliary particle filter,which is believed to be capable of resolving the state filtering problems with small process noise better than the bootstrap filter[8].The other uses a UKFwhich is believed to be an appropriate algorithm for the gyro bias estimation of approximately Gaussian distribution and also for its low amount of calculation.Hence the two novel filters are named of the modified DPF and the HFrespectively.

    1 Gyro-equipped attitude determination state space models

    A general continuous dynamics model is given in[1-2],which in general is discretized as[2,7]

    whereqkis the quaternion,q =[qTq4]T,q is the vector part and q4is the scalar part.βkis the TAGdrift rate bias vector;is a stationary zero-mean,white noise process with covariancewhereinis an orthogonal transition matrix about the true angular velocityωkof the body(B)frame with respect to the reference(R)frame,(ωkis resolved in B frame.)and the matrix is given

    the true rateωkis unknown and is obtained from the TAG measurement,whereinis the TAG measurement,ηυ,kis the zero-mean white Gaussian measurement noise with covarianceThe TAM vector observation model is given[2]

    where~bkis the TAMmeasurement,bR,kis the reference geomagnetic field,vB,kis the TAM observation noise whose distribution is already known,Akis the attitude matrix of the B frame with respect to the R frameand is the matrix representation of the quaternion qk.

    2 Modified dual particle filter

    In this section,first the present quaternion particle filter which is slightly different from the QPF is simply introduced,then an auxiliary particle bias filter is completely given.Consider the resamplingand regularizing disturb the posterior representation[8],it is better for the precision with a posterior estimation to implement the computations of the mean and the covariance before the resampling and regularizing stage.

    2.1 Quaternion particle filter

    2.1.1 Initialization(k=0)

    A single vector observation can not make the threedimensional attitude completely observable,though the rest uncertain attitude information is reduced to one dimension,i.e.,the rotation angle around the vector.Oshman and Carmi make use of the fact and propose a method to generate a number of initial quaternion parti-cles(or samples)which keep the normalization constraint.A detailed technique is presented in Appendix B of[10].However,the choice of an appropriate number of initial quaternion particles denoted by NSdepends on simulation experience.Denote the initial prior quaternion particle set byand the corresponding weight set byClearly,

    2.1.2 Observation update(k=0,…,N)

    Firstly calculate the likelihood probability of the quaternion particle

    whereρv(·)represents the probability density of the observation noise vB,k.

    2.1.3 Computation of mean and covariance(k=0,…,N)

    The application of the classical solutions to compute the mean and the covariance from the weighted particle set to the weighted quaternion particles may destroy the normalization constraint and get in trouble with the quaternion ambiguity problem.One maximumposterior probability(MAP)approach and two minimum mean square error(MMSE)approaches are recommended in[10]to compute the mean quaternion.Consider a low accuracy of the MAP approach and the identical character of the two MMSE approaches,this paper only uses the second MMSE approach that is similar to Davenport’s well known‘q-method’.The optimal quaternion estimateis the normalized eigenvector corresponding to the largest eigenvalue of matrix

    where tr(·)is operation of‘trace’,matrix Bkand vectorζare respectively defined by

    The quaternion estimation error covariance is given[10]

    2.1.4 Resample and regularization(k=0,…,N)Calculate the effective sample size

    Denote the 3×3 matrix of the vector part of the quaternion estimation error covariancebyand its square root matrix bythen draw samples as

    wherein N(·|m,S)is a multivariate normal density with mean mand variance S;hGis the bandwidth of the Gaussian kernel and is suggested with the optimal value

    Finally,the diversity of the resampled quaternion particles is added as

    2.1.5 quaternion particle propagation(k=0,…,N)

    The TAG sample periodΔh is much smaller than the TAM sample periodΔt.Assume the two periods satisfy KRIG=Δt/Δh,where KRIGis an integer.The quaternion particle is propagated by using

    2.2 Auxiliary particle bias filter

    Based on the standard particle filter(e.g.,bootstrap filter),Pitt and Sheppard[14]proposed a socalled auxiliary particle filter that is able to automaticly generate particles from the particles of the previous time step which are most likely to the true state.Compared to the bootstrap filter,this filter is effective to deal with state filtering problems when the process noise is small.Consider that the process noiseηu,kis small for the bias vectorβk,one can see the auxiliary particle filter is a better bias estimator.

    2.2.1 Initialization(k=0)

    Draw initial aprior bias particles from the prior distributionρ(θ0),say,a Gaussian distribution

    whereβ^0andare the initial bias mean estimate and covariance estimaterespectively.Denote theinitial aprior bias particleset by

    and their corresponding weight set by.Clearly,Calculate the initial likelihood probability

    where the NPinitial quaternion particlesmight be chosen from the generated initial quaternion particleOf course,this is for the case where NP≤NS.Otherwise,theextra NP-NS+1quaternion particleshave to be additionally generalized.In this paper,assume NP=NS.Finally,calculate the weightsand normalize them as

    2.2.2 Bias particle propagation(k=1,…,N)

    Secondly,calculate the likelihood probability of some biasby using a similar method as Eq.(4)

    Thirdly,calculate the weightsand normalize them as

    select the high likely bias particles of previous time step using the systematic resample method,e.g.,

    where il represents the current particle‘l’is drawn from the particle‘i’of previous time step.

    Finally,the bias particles are propagated as

    2.2.3 Observation update(k=1,…,N)

    Firstly,calculate the likelihood probability again

    2.2.4 Computation of Mean and Covariance(k=0,…,N)

    2.2.5 Resample and regularization(k=0,…,N)

    This step is believed to be unnecessary for an auxiliary particle filter by Arulampalam et al[8],but improved by Pitt and Sheppard[14].This paper suggests taking this step when the effective sample sizeis below given threshold,e.g.,2NP/3.The weights of the resampled bias particles are set to1/NP.Regularize the resampled bias particles as follows

    3 Hybrid filter

    The difference of the HFfromthe modified DPFis the use of a UKF bias estimator,which is a direct application of the UKF algorithm to the 3-dimensional bias estimation.The bias UKF is given as follows.

    3.1 Initialization(k=0)

    Denote theinitial aprior mean estimate and covariance estimateandto generate a initial bias sigma point setthe weights for calculating the mean and the covariance are denoted byandrespectively.

    Then choose seven initial aprior quaternion particles from the setand generate seven prediction observation sigma points as

    3.2 Observation update(k=0,…,N)

    Firstly,calculate the mean observation

    Secondly,calculate the innovation and its covariance respectively

    where Rkis the covariance of the observation noisevB,kwhich is regarded as a zero-mean,white Gaussian noise.

    Thirdly,calculate the correlative covariance matrix and the gain matrix respectively

    Finally,calculate the posterior mean and covariance respectively

    3.3 Bias sigma point propagation(k=0,…,N)

    Firstly predict the bias mean and the covariance matrix

    Then generate prediction observation sigma points as

    where

    4 Simulation results and analysis

    A typical small satellite considered in[15]is chosen in the simulation section.The satellite runs in a nearly circular low Earth orbit with an inclination of 82°and a height of 823 km,it is out of control and spinning with an initial rate of 2.0°/s.The real geomagnetic field vector is simulated using a 10-order international geomagnetic reference field model.The reference vector is simulated using an 8-order model.White and colored TAM measurement noise processes are considered.The white Gaussian noise of 60 nT(σ)is used in the simulations of subsections 4.1 and 4.2,and the colored noise is introduced to the simulations of subsection 4.3.The colored-noisemodel is described by a first-order Markov process driven by white noise[16].The‘time constant’of the Markov process has been chosen corresponding to an orbital arc length of 18°(about 300 s in this paper).The power spectral density of the white-noise driving term has been chosen,so that the magnitude of the colored noise will match the white Gaussian noise used in subsections 4.1 and 4.2.The measurements periodΔt of the TAM is 10s.The TAG output is contaminated with a measurement noise with two components:a white zero-mean Gaussian process with intensityand a drift bias modeled as an integrated Gaussian white noise with intensitys3.The true initial drift rate bias is set to 0.1°/h on each axis.The sampling periodΔh of the TAG is 1s.

    4.1 Effects of various particle numbers on performances of the modified DPF and the HF

    Various particle numbers are chosen to test the performances of the modified DPF and the HF.For convenience,let NP=NS.The initial bias mean estimate and the covariance estimate are given

    To evaluate thequaternion and the bias filtering errors,two indexes used in[10]are introduced.One is for the quaternion estimation error(in degrees)evaluation and is given

    whereδq4is the scalar component of the error quaternionδq.The other is the TAGbias estimation error norm(in°/h).

    The time histories of the quaternion estimation errors of four HF filters(NSP=120,NSP=300,NSP=600 and NSP=900)show the steady-state estimation errors are not more than 0.25°and the differences among them are slight.These HF filters converge from large initial errors(>150°)into the steady-state errors in about 10min.Similar results are obtained from the modified DPF.However the bias estimation errors of the modified DPF filters and those of the HF filters shown in Fig.1 are different.Fig.1a shows the bias errors of the HF filters always remaining in the neighborhood of some constant bias during the whole time interval.Fig.1b shows that the errors of the modified DPF filters first increasing and then remaining in the neighborhood of some constant bias.By far it is not difficult to find that the effects of particle numbers on the attitude and bias filtering performances of the two novel filters are not very crucial or clear when 900≥NS=NP≥120.Therefore,in the following simulations,NS=NP=120 are used.

    In addition,a large initial bias estimate is used to test the convergent performance of the HF,e.g.,

    Fig.1 Bias norm estimation errors of modified DPF and HF with various numbers of particle

    However,it takes the HF about 11h to reach the steady-state attitude estimation error of 0.25°,and the bias norm estimation error indeed decreases to a nearly constant rate.As shown in Fig.2,the slow rate does not mean the bias UKFis an inefficient filter in nature.The real reason,we suspect,is that the innovated information from the vector observations can not be directly fed back to the observation updating of the bias estimate.Unless mentioned,the initial bias estimate used in the simulations is better estimated as given in Eqs.(7)and(8).

    4.2 Effects of initial quaternion estimate on filtering performances

    The two novel filters have been compared to the MEKF and the USQUE.Different initial quaternion estimates have been considered for the MEKF and the USQUE,while the modified DPF and the HF generate the initial quaternion particles using the technique in Appendix B of[10].

    Fig.2 Bias norm estimation errors of HF with a bad initial bias estimate

    4.2.1 Constant initial quaternion of small estimation error

    In this example,an initial quaternion estimate whose norm attitude error is 50°has been chosen for the MEKF and the USQUE.A large initial attitude covariance matrix has been chosen for the MEKF and the USQUE.Though the large matrix might be physically meaningless,it can speed up the convergence.

    The results show that the four filters converge to the steady-state quaternion estimation errors at almost same rate and their quaternion estimation errors are of same level.However,the MEKF and the USQUE reach their bias estimation errors equivalent to HF in about 10000 s and the errors of all the three filters are lower than the modified DPF almost during the whole time interval,as shown in Fig.3.

    Obviously,the classical filters can achieve a better performance with much less calculation when the initial quaternion estimation error is small.If a good initialization is expectable,either the MEKFor the USQUE is a more promising filter.

    4.2.2 Constant initial quaternion of large estimation error

    Fig.3 Bias norm estimation errors of four filters with constant initial quaternion estimate(small-error case)

    In this example,a worse initial quaternion estimate whose norm attitudeerror is 160°has been chosen for the MEKF and the USQUE.Compared to those above results,the modified DPF and the HF keep almost same performances,whereas the performances of the other two classical filters sharply degenerate and are much worse than the two novel filters.Fig.4 shows that,the novel filters reach the quaternion estimation error of less than 0.25°in about 10 min,whereas the USQUE and the MEKF need about 17 h respectively to reach the errors of less than 0.5°and 1.5°.Obviously the modified DPF and the HF are more promising when the initial estimation error is large.Necessary to mention,thebetter performance of the USQUEwith respect to that of the MEKF is obtained by regulating the UT parameter(i.e.,α∈[0,1]).That is to say,the same USQUE does not guaranteed in any case to achieve a steady performance than the MEKF.In other words,the classical filters depend more on the regulating work than the novel filters do.

    Fig.4 Quaternion estimation errors of four filters with constant initial quaternion estimate(large-error case)

    4.2.3 Uncertain initial quaternion

    In this part,the initial quaternion estimates of the MEKF and the USQUE are ramdomly generated according to a uniform distribution on the unit hypersphere.The four filters are executed independently for 50 Monte Carlo runs.The maximum errors of the four filters during 30000 s to 62000 s are chosen for each run.The statistical distribution results of these maximum errors are given in Table 1.One can see that,the HF in 50 runs all reaches the quaternion estimation error of less than 0.5°.The convergent performance of the modified DPF is a little worse than HF but much better than the USQUE,The MEKF is the worst.

    In addition,the average runtimes of the four filters are also tested.The results can be regarded as an indirect evaluation of their average calculation amounts.The 50×4 runs are executed in the computers of same computing capacity.If denote the average runtime of the MEKF as 1,then the USQUE,the HF,and the modified DPF are 6,60,and 170 respectively.Surprisingly,the HF filter’s runtime is only 10 times as the USQUE filter’s.So the HFis a promising filter for onboard applications.

    Table 1 Statistical distribution results of quaternion estimation errors of four filters with uncertain initial quaternion estimates(50 runs)

    4.3 Effects of colored observation noise on filtering performances

    In this example,the performances of the four filters using colored TAM measurements have been tested.Use the third innovation(i.e.,residual)component processes of the MEKF,the USQUE,the modified DPF,and the HF respectively for the white noise and the colored noise,an exact evaluation is done by computing the time-averaged autocorrelation[17]

    whereυk,iis the ithcomponent of the innovation vector at timetk;ˉλis the correlative step;nυis the dimension of the innovation vector;Nυis the number of the considered observation data points.If the innovation process is zeromean white Gaussian,theˉρi(ˉλ)is zero mean with variance of 1/Nυfor Nυlarge enough.In this example,Nυ=4000and variousˉλare used.The mean and variance results ofˉρi(ˉλ)for the white noise and the colored noise are respectively given in Table 2and Table 3.For an optimal filter,the mean and the varianceofˉρi(ˉλ)should be 0 and 2.5×10-4respectively.Table 2 shows that the mean results for the four filters are comparable and close to zero,whereas thevarianceresults for themodified DPF and the HF are considerably close to the optimal values and thevarianceresults for the two classical filters are far from the optimal values.That is,the novel filters can process the vector observations with white noise much better than the classical filters do.Similar conclusions can be drawn from the results shown in Table.3.Comparing Table 3 to Table 2,one can see the variance values for the two novel filters which use thecolored observations have increased many times,while those for the classical filters appear no remarkable varieties.

    Table 2 Statistical results for time-averaged autocorrelation indexes of four filters’residuals(the third component)in the white-noise case

    Table 3 Statistical results for time-averaged autocorrelation indexes of four filters’residuals(the third component)in the colored-noise case

    5 Conclusions

    Two novel filters are proposed for the gyro-equipped spacecraft attitude determination from vector observations.They are modified DPF and HF respectively.Both filters consist of same quaternion particle filter but use a different gyro drift rate bias estimator.The modified DPF filter uses an auxiliary particle bias filter,while the HF filter uses a UKF bias filter.An extensive simulation study has been done to evaluate the performances of the two novel filters and tocompare them with two classical filters:the MEKF and the USQUE.

    Several important conclusions are drawn.The first is,none of the considered filters can always achieve a best estimation performance in any case.The classical filters can achieve better estimation accuracy with respect to the two proposed novel filters with much smaller computing amounts when a good initial quaternion estimate is expectable;otherwise their convergent performances are possibly reduced and even much worse than those of the novel filters,whereas the proposed filters are able to achieve the consistent estimation performances in various cases.Thesecond is,theeffect of the particle number on the estimation performance of the modified DPF or the HF is not very crucial when the number is large enough.Surprisingly,both the HF and the modified DPF can achieve a better convergent performance with only 120 particles.The HF is a promising filter for the real-time spacecraft attitude de-termination applications.The third is,the novel filters can process the vector observations much better than the classical filters do.All considered filters show some certain robustness for colored vector observations.At last,an advice that has been made by someone else is repeated again,that is,thecombined use of theclassical Kalman filter variants and the recently proposed particle attitude determination filters is likely to achieve a better estimation performance.For example,the HF is used as an initialization stage for the MEKF or the USQUE.

    [1] Lefferts E J,Markley F L,Shuster M D.Kalman filtering for spacecraft attitude estimation[J].Journal of Guidance,Control,and Dynamics,1982,5(5):417-429.

    [2] Markley F L,Crassidis JL,Cheng Y.Nonlinear attitude filtering methods[C].AIAA Guidance,Navigation,and Control Conf.and Exhibit,SA,California,USA,Aug.,2005.

    [3] Shuster M D.Constraint in attitude estimation part I:constrained estimation[J].The Journal of the Astronautical Sciences,2003,51(1):51-74.

    [4] Shuster M D.Constraint in attitude estimation part II:unconstrained estimation[J].The Journal of the Astronautical Sciences,2003,51(1):75-101.

    [5] Markley F L.Attitude estimation or quaternion estimation[J].The Journal of the Astronautical Sciences,2004,52(1-2):221-238.

    [6] Bar-Itzhack I Y,Oshman Y.Attitude determination from vector observations:quaternion estimation[J].IEEE Trans.on Aerospace and Electric Systems,1985,21(1):128-136.

    [7] Crassidis JL,Markley FL.Unscented filtering for spacecraft attitude estimation[J].Journal of Guidance,Control,and Dynamics,2003,26(4):536-542.

    [8] Arulampalam M S,Maskell S,Gordon N,Clapp T.A tutorial on particle filters for online nonliear/non-gaussian bayesian tracking[J].IEEE Trans.On Signal Processing,2002,52(2):174-188.

    [9] Cheng Y,Crassidis J L.Particle filtering for sequential spacecraft attitude estimation[C].AIAA Guidance,Navigation,and Control Conf.and Exhibit,Rhode Island,USA,Aug.,2004.

    [10] Oshman Y,Carmi A.Attitude estimation from vector observation using genetic-algorithm-embedded quaternion particle filter[J].Journal of Guidance,Control,and Dynamics,2006,29(4):879-891.

    [11] Jiang X Y,Ma G F.Spacecraft attitude estimation from vector measurements using particle filter[C].The 4th Intel.Conf.on Machine Learning and Cybernetics,Guangzhou,China,Aug.,2005.

    [12] Schaub H,Junkins JL.Stereographic orientation parameters for attitude dynamics:ageneralization of the rodrigues parameters[J].The Journal of the Astronautical Sciences,1996,44(1):1-19.

    [13] Jiang X Y,Ma G F.Satellite attitude estimation based on marginalized particle filter[J].Control and Decision,2007,22(1):39-44.

    [14] Pitt M,Shephard N.Filtering via simulation:auxiliary particle filters[J].J.Amer.Statist.Assoc.,1999,94(446):590-599.

    [15] Psiaki M L.Global magnetometer-based spacecraft attitude and rate estimation[J].Journal of Guidance,Control,and Dynamics,2004,27(2):240-250.

    [16] Alonso R,Shuster M D.TWOSTEP:a fast robust algorithm for attitude-independent magnetometer-bias determination[J].The Journal of the Astronautical Sciences,2002,50(4):433-451.[17] Bar-Shalom Y,Li X R,Kirubarajan T.Estimation with applications to Tracking and Navigation[M].New York:John Wiley&Sons,Inc.,2001.

    猜你喜歡
    工程系哈爾濱工業(yè)大學(xué)東方紅
    Entrevista ping-pong “Mi mayor logro es haber aprendido espa?ol”
    “東方紅”五號衛(wèi)星平臺
    《哈爾濱工業(yè)大學(xué)學(xué)報(bào)》征稿簡則
    東方紅20周年譜華章
    電子信息工程系
    《哈爾濱工業(yè)大學(xué)學(xué)報(bào)》征稿簡則
    《哈爾濱工業(yè)大學(xué)學(xué)報(bào)》征稿簡則
    機(jī)電工程系簡介
    哈爾濱工業(yè)大學(xué)設(shè)計(jì)學(xué)系
    穿行:服裝工程系畢業(yè)設(shè)計(jì)作品
    成年人午夜在线观看视频| 黄色一级大片看看| 女警被强在线播放| 国产精品免费大片| 成年人午夜在线观看视频| videos熟女内射| 高清视频免费观看一区二区| 丝袜人妻中文字幕| 国产精品免费大片| 欧美成人午夜精品| 欧美97在线视频| 亚洲精品一二三| 大话2 男鬼变身卡| 免费久久久久久久精品成人欧美视频| 欧美日韩精品网址| 日韩欧美一区视频在线观看| 男的添女的下面高潮视频| 成人国产av品久久久| 成在线人永久免费视频| bbb黄色大片| 50天的宝宝边吃奶边哭怎么回事| 悠悠久久av| 久久久精品免费免费高清| 欧美xxⅹ黑人| 啦啦啦在线观看免费高清www| 王馨瑶露胸无遮挡在线观看| 波多野结衣av一区二区av| 国产一区二区三区综合在线观看| 青草久久国产| 一级毛片女人18水好多 | 制服诱惑二区| 高清不卡的av网站| 人人妻,人人澡人人爽秒播 | 国精品久久久久久国模美| 日韩中文字幕欧美一区二区 | 啦啦啦在线免费观看视频4| 激情视频va一区二区三区| 国产不卡av网站在线观看| 伊人亚洲综合成人网| 成人国产av品久久久| 男人添女人高潮全过程视频| 亚洲国产看品久久| av福利片在线| 观看av在线不卡| 国产欧美日韩综合在线一区二区| 精品国产一区二区久久| av片东京热男人的天堂| 午夜激情久久久久久久| 久久ye,这里只有精品| 在线观看国产h片| 国产av国产精品国产| 久久精品亚洲熟妇少妇任你| 亚洲欧美中文字幕日韩二区| 精品国产超薄肉色丝袜足j| 久久久久久久大尺度免费视频| 十八禁高潮呻吟视频| 国产在线观看jvid| 成人午夜精彩视频在线观看| 宅男免费午夜| 女性生殖器流出的白浆| 久久国产精品大桥未久av| 最近最新中文字幕大全免费视频 | 热re99久久国产66热| 国产无遮挡羞羞视频在线观看| 1024香蕉在线观看| 一级片免费观看大全| xxx大片免费视频| 国产免费一区二区三区四区乱码| 亚洲精品中文字幕在线视频| 日韩电影二区| 51午夜福利影视在线观看| 女人精品久久久久毛片| 9191精品国产免费久久| 三上悠亚av全集在线观看| 尾随美女入室| 欧美亚洲 丝袜 人妻 在线| www.熟女人妻精品国产| 狂野欧美激情性bbbbbb| avwww免费| 免费观看av网站的网址| 精品一区二区三区四区五区乱码 | 国产日韩欧美在线精品| 丝袜美腿诱惑在线| 国产极品粉嫩免费观看在线| 9色porny在线观看| 亚洲熟女毛片儿| 日韩精品免费视频一区二区三区| 亚洲人成77777在线视频| 青草久久国产| svipshipincom国产片| 中文字幕精品免费在线观看视频| 少妇粗大呻吟视频| 午夜福利一区二区在线看| 久久国产精品大桥未久av| 日韩大片免费观看网站| 我的亚洲天堂| 午夜视频精品福利| 啦啦啦 在线观看视频| 国产伦人伦偷精品视频| 婷婷丁香在线五月| 老司机在亚洲福利影院| 国产一卡二卡三卡精品| 一区二区av电影网| 亚洲午夜精品一区,二区,三区| 日韩欧美一区视频在线观看| 别揉我奶头~嗯~啊~动态视频 | www.自偷自拍.com| 人成视频在线观看免费观看| 91老司机精品| 精品亚洲成a人片在线观看| 成年美女黄网站色视频大全免费| 搡老乐熟女国产| 国产精品久久久久久精品古装| 欧美日本中文国产一区发布| 18禁裸乳无遮挡动漫免费视频| 男人爽女人下面视频在线观看| 久久毛片免费看一区二区三区| 欧美日韩成人在线一区二区| 91精品伊人久久大香线蕉| 午夜福利视频在线观看免费| 国产精品国产三级专区第一集| 91老司机精品| 欧美精品高潮呻吟av久久| av网站免费在线观看视频| 国产片内射在线| 妹子高潮喷水视频| 欧美激情高清一区二区三区| 在线观看国产h片| 女人被躁到高潮嗷嗷叫费观| 亚洲av日韩在线播放| svipshipincom国产片| 国产亚洲欧美在线一区二区| 首页视频小说图片口味搜索 | 日本色播在线视频| 最近手机中文字幕大全| 熟女av电影| 精品熟女少妇八av免费久了| 五月天丁香电影| 亚洲视频免费观看视频| 少妇人妻 视频| 中文字幕精品免费在线观看视频| 一本一本久久a久久精品综合妖精| 精品熟女少妇八av免费久了| 欧美日韩av久久| 人妻一区二区av| 人人妻人人澡人人看| 一区二区三区乱码不卡18| 久久狼人影院| 欧美日韩福利视频一区二区| 精品福利观看| 国产成人精品在线电影| 亚洲精品国产一区二区精华液| 天堂俺去俺来也www色官网| 国产在线免费精品| 亚洲精品乱久久久久久| 免费看av在线观看网站| 美女脱内裤让男人舔精品视频| 高清av免费在线| 建设人人有责人人尽责人人享有的| 黄色一级大片看看| 亚洲国产欧美在线一区| 每晚都被弄得嗷嗷叫到高潮| 天天操日日干夜夜撸| 亚洲国产精品一区三区| tube8黄色片| 亚洲国产欧美一区二区综合| 免费一级毛片在线播放高清视频 | 自线自在国产av| 久久99一区二区三区| 久久综合国产亚洲精品| 波多野结衣av一区二区av| 视频在线观看一区二区三区| 啦啦啦视频在线资源免费观看| 99久久人妻综合| 男女下面插进去视频免费观看| 两个人看的免费小视频| 老熟女久久久| 亚洲国产欧美一区二区综合| 欧美日韩国产mv在线观看视频| 国产主播在线观看一区二区 | 丝袜喷水一区| 日本色播在线视频| 99国产精品一区二区三区| 18禁国产床啪视频网站| 可以免费在线观看a视频的电影网站| 亚洲专区国产一区二区| 五月开心婷婷网| 国产男人的电影天堂91| 伊人久久大香线蕉亚洲五| 大型av网站在线播放| 人人妻人人添人人爽欧美一区卜| 久久精品熟女亚洲av麻豆精品| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美一区二区三区国产| 欧美激情高清一区二区三区| 丁香六月欧美| 国产一卡二卡三卡精品| 久久久久国产一级毛片高清牌| 精品国产超薄肉色丝袜足j| 99精国产麻豆久久婷婷| 亚洲精品国产色婷婷电影| 嫩草影视91久久| 久久免费观看电影| 久久国产亚洲av麻豆专区| 精品一区二区三卡| 99热网站在线观看| 老汉色∧v一级毛片| 肉色欧美久久久久久久蜜桃| 真人做人爱边吃奶动态| 午夜福利乱码中文字幕| 色婷婷av一区二区三区视频| 建设人人有责人人尽责人人享有的| 人体艺术视频欧美日本| 我的亚洲天堂| av视频免费观看在线观看| 视频区图区小说| 精品福利观看| 精品免费久久久久久久清纯 | 国产精品一区二区在线观看99| 亚洲精品国产一区二区精华液| 久久久久久人人人人人| 免费看十八禁软件| 91九色精品人成在线观看| 日韩 欧美 亚洲 中文字幕| av福利片在线| 亚洲欧美日韩另类电影网站| 久久国产精品大桥未久av| 久久影院123| 男女午夜视频在线观看| 亚洲人成电影免费在线| 在线观看www视频免费| 欧美激情高清一区二区三区| 精品高清国产在线一区| 亚洲男人天堂网一区| 亚洲精品乱久久久久久| 亚洲av成人不卡在线观看播放网 | 久久午夜综合久久蜜桃| 在线观看免费视频网站a站| bbb黄色大片| 又紧又爽又黄一区二区| 免费高清在线观看日韩| 高清不卡的av网站| 久久久精品免费免费高清| 亚洲国产av影院在线观看| 欧美成人午夜精品| 老鸭窝网址在线观看| 91精品国产国语对白视频| 午夜免费观看性视频| 国产精品秋霞免费鲁丝片| 亚洲熟女毛片儿| 大话2 男鬼变身卡| 国产在视频线精品| 人人妻人人澡人人爽人人夜夜| 国产片内射在线| 国产亚洲av片在线观看秒播厂| 青草久久国产| 国产视频一区二区在线看| 你懂的网址亚洲精品在线观看| 一级毛片女人18水好多 | 国精品久久久久久国模美| 两个人免费观看高清视频| 老司机午夜十八禁免费视频| 亚洲中文字幕日韩| 色精品久久人妻99蜜桃| 美国免费a级毛片| 精品少妇黑人巨大在线播放| 久久国产精品人妻蜜桃| av视频免费观看在线观看| 成人国产av品久久久| 高清不卡的av网站| 一本一本久久a久久精品综合妖精| 中文精品一卡2卡3卡4更新| 欧美日韩亚洲高清精品| 成人黄色视频免费在线看| 午夜激情av网站| 欧美日韩综合久久久久久| 人人澡人人妻人| 日韩精品免费视频一区二区三区| 精品欧美一区二区三区在线| 波多野结衣av一区二区av| 免费在线观看黄色视频的| 1024视频免费在线观看| 王馨瑶露胸无遮挡在线观看| 日韩熟女老妇一区二区性免费视频| 久久ye,这里只有精品| 日韩视频在线欧美| 一本色道久久久久久精品综合| 欧美日韩亚洲高清精品| 麻豆国产av国片精品| av在线播放精品| 精品视频人人做人人爽| 成人国产av品久久久| 亚洲国产av新网站| 欧美日韩精品网址| 美女脱内裤让男人舔精品视频| 久久精品久久精品一区二区三区| 人人妻人人爽人人添夜夜欢视频| 亚洲国产精品一区三区| 熟女av电影| 国产男女内射视频| 国产日韩欧美在线精品| 日韩中文字幕视频在线看片| 91成人精品电影| 欧美日韩一级在线毛片| 欧美日韩亚洲高清精品| 美女主播在线视频| 晚上一个人看的免费电影| 免费人妻精品一区二区三区视频| 老司机在亚洲福利影院| 伊人亚洲综合成人网| 久久久久网色| 满18在线观看网站| 亚洲精品国产av成人精品| 久久精品人人爽人人爽视色| 国产免费视频播放在线视频| 久久精品人人爽人人爽视色| 热re99久久国产66热| 亚洲国产日韩一区二区| 校园人妻丝袜中文字幕| 久久精品国产亚洲av涩爱| 制服人妻中文乱码| 亚洲第一青青草原| 中文字幕最新亚洲高清| 熟女av电影| 精品一区在线观看国产| 亚洲视频免费观看视频| 青春草亚洲视频在线观看| 日韩精品免费视频一区二区三区| 美女扒开内裤让男人捅视频| avwww免费| 亚洲国产欧美在线一区| 精品国产一区二区三区四区第35| 啦啦啦在线观看免费高清www| 久久久国产欧美日韩av| 十分钟在线观看高清视频www| 久久精品国产a三级三级三级| 欧美日韩一级在线毛片| 成年av动漫网址| 精品熟女少妇八av免费久了| 男人舔女人的私密视频| 日本wwww免费看| 亚洲专区中文字幕在线| 国产国语露脸激情在线看| 免费看av在线观看网站| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜精品国产一区二区电影| 亚洲国产av新网站| 丁香六月天网| 精品欧美一区二区三区在线| 久久狼人影院| 一级毛片电影观看| av视频免费观看在线观看| 国产精品三级大全| 国产不卡av网站在线观看| 精品一区在线观看国产| 亚洲第一青青草原| 久久99热这里只频精品6学生| 高清视频免费观看一区二区| 亚洲 欧美一区二区三区| 久久久久精品人妻al黑| 国产成人免费无遮挡视频| 九草在线视频观看| 国产成人精品久久二区二区免费| 国产高清不卡午夜福利| 中文字幕精品免费在线观看视频| 最近最新中文字幕大全免费视频 | 国产精品偷伦视频观看了| 麻豆乱淫一区二区| 国产精品成人在线| 欧美成人精品欧美一级黄| 波多野结衣一区麻豆| 亚洲精品中文字幕在线视频| 在线观看免费午夜福利视频| 中文字幕制服av| 欧美日韩福利视频一区二区| av天堂在线播放| 老司机午夜十八禁免费视频| 女人高潮潮喷娇喘18禁视频| 两人在一起打扑克的视频| 国产日韩欧美亚洲二区| xxx大片免费视频| 精品一区二区三卡| 国产片内射在线| 亚洲精品一二三| 精品第一国产精品| 黄色视频不卡| 91精品伊人久久大香线蕉| 国产免费现黄频在线看| 美国免费a级毛片| 国产亚洲精品久久久久5区| 高清欧美精品videossex| 国产伦人伦偷精品视频| 欧美日韩精品网址| 国产精品偷伦视频观看了| 超碰97精品在线观看| 午夜av观看不卡| 999精品在线视频| 99香蕉大伊视频| 成人国产一区最新在线观看 | 午夜免费观看性视频| 男女高潮啪啪啪动态图| 久久av网站| 日本av手机在线免费观看| 精品人妻熟女毛片av久久网站| 我的亚洲天堂| 色94色欧美一区二区| 王馨瑶露胸无遮挡在线观看| 国产成人精品久久久久久| 在线 av 中文字幕| 最新的欧美精品一区二区| 一区二区三区激情视频| av福利片在线| 日本91视频免费播放| 国产成人欧美在线观看 | 久久人人爽av亚洲精品天堂| 黄色视频不卡| 国语对白做爰xxxⅹ性视频网站| 中文字幕人妻丝袜制服| a 毛片基地| 国产精品国产三级专区第一集| 啦啦啦啦在线视频资源| 国产国语露脸激情在线看| 新久久久久国产一级毛片| 精品久久蜜臀av无| 两个人免费观看高清视频| 成人18禁高潮啪啪吃奶动态图| 99re6热这里在线精品视频| 日日夜夜操网爽| 国产男女超爽视频在线观看| 免费日韩欧美在线观看| 汤姆久久久久久久影院中文字幕| 老司机靠b影院| 99热国产这里只有精品6| 女人高潮潮喷娇喘18禁视频| 美女扒开内裤让男人捅视频| 一本一本久久a久久精品综合妖精| 亚洲 欧美一区二区三区| 少妇粗大呻吟视频| 18禁黄网站禁片午夜丰满| 老熟女久久久| 欧美日韩亚洲国产一区二区在线观看 | 亚洲九九香蕉| 亚洲一区中文字幕在线| 国产精品国产三级专区第一集| 国产成人欧美| 性少妇av在线| 国产淫语在线视频| 91老司机精品| 色网站视频免费| 成年人午夜在线观看视频| 汤姆久久久久久久影院中文字幕| 国产欧美日韩一区二区三区在线| 首页视频小说图片口味搜索 | av国产精品久久久久影院| 色94色欧美一区二区| av不卡在线播放| 麻豆av在线久日| 丝袜在线中文字幕| 成人国语在线视频| 赤兔流量卡办理| 一级毛片女人18水好多 | 大片电影免费在线观看免费| 国产不卡av网站在线观看| 脱女人内裤的视频| 少妇裸体淫交视频免费看高清 | 美女视频免费永久观看网站| 日韩制服骚丝袜av| 成年动漫av网址| 国产一区二区 视频在线| 女性生殖器流出的白浆| 久久久久网色| 国产精品一国产av| 亚洲少妇的诱惑av| 另类亚洲欧美激情| 精品少妇久久久久久888优播| 国产男女超爽视频在线观看| 国产精品一区二区精品视频观看| 成人黄色视频免费在线看| 女人高潮潮喷娇喘18禁视频| 欧美少妇被猛烈插入视频| 十八禁网站网址无遮挡| 一本大道久久a久久精品| 日韩一本色道免费dvd| 蜜桃国产av成人99| 各种免费的搞黄视频| 久久天堂一区二区三区四区| 91精品国产国语对白视频| 大话2 男鬼变身卡| 亚洲av综合色区一区| 七月丁香在线播放| 午夜免费男女啪啪视频观看| 午夜福利视频精品| 欧美精品人与动牲交sv欧美| 晚上一个人看的免费电影| 各种免费的搞黄视频| 宅男免费午夜| 欧美日韩国产mv在线观看视频| 亚洲国产欧美一区二区综合| 狠狠精品人妻久久久久久综合| 777米奇影视久久| 人人妻人人爽人人添夜夜欢视频| 精品久久久精品久久久| 日韩大码丰满熟妇| 日本五十路高清| 国产成人啪精品午夜网站| kizo精华| 午夜免费鲁丝| 国产一区二区三区综合在线观看| 中文字幕av电影在线播放| 夫妻性生交免费视频一级片| 中文字幕精品免费在线观看视频| 99国产精品一区二区蜜桃av | 欧美激情 高清一区二区三区| av天堂久久9| 国产不卡av网站在线观看| 国产人伦9x9x在线观看| 两个人免费观看高清视频| 亚洲欧洲日产国产| 美女中出高潮动态图| xxx大片免费视频| 亚洲欧美色中文字幕在线| 在线av久久热| 欧美av亚洲av综合av国产av| 成人国产av品久久久| 免费不卡黄色视频| 亚洲少妇的诱惑av| 嫁个100分男人电影在线观看 | 婷婷色麻豆天堂久久| 老司机在亚洲福利影院| 亚洲av欧美aⅴ国产| 国产老妇伦熟女老妇高清| 色精品久久人妻99蜜桃| av线在线观看网站| www.精华液| 午夜福利,免费看| 亚洲,一卡二卡三卡| 美女脱内裤让男人舔精品视频| 老司机影院成人| 高清黄色对白视频在线免费看| 老司机在亚洲福利影院| 视频在线观看一区二区三区| 亚洲三区欧美一区| 别揉我奶头~嗯~啊~动态视频 | 天天躁夜夜躁狠狠躁躁| 国产精品一国产av| 国产一级毛片在线| 99香蕉大伊视频| 日韩一区二区三区影片| 99国产综合亚洲精品| 亚洲精品国产av成人精品| 丝袜美腿诱惑在线| 午夜福利视频精品| 国产成人精品在线电影| 精品少妇内射三级| 欧美日韩综合久久久久久| 最近手机中文字幕大全| 久久精品人人爽人人爽视色| 大片免费播放器 马上看| 成人亚洲欧美一区二区av| 最近手机中文字幕大全| 久久精品国产亚洲av高清一级| 免费在线观看视频国产中文字幕亚洲 | 欧美精品一区二区免费开放| 国产又爽黄色视频| 国精品久久久久久国模美| 美女大奶头黄色视频| 久久人人97超碰香蕉20202| 久久久精品94久久精品| 黑丝袜美女国产一区| 国产亚洲一区二区精品| 可以免费在线观看a视频的电影网站| 十八禁网站网址无遮挡| a 毛片基地| 精品久久久久久电影网| 亚洲第一青青草原| 欧美精品啪啪一区二区三区 | 中文字幕色久视频| 亚洲精品美女久久av网站| 水蜜桃什么品种好| 国产成人免费观看mmmm| 亚洲精品美女久久久久99蜜臀 | 久久九九热精品免费| 国产xxxxx性猛交| 男男h啪啪无遮挡| 久久精品成人免费网站| 午夜福利视频在线观看免费| 一级毛片女人18水好多 | 午夜精品国产一区二区电影| av一本久久久久| 一级毛片黄色毛片免费观看视频| 亚洲国产欧美日韩在线播放| 黑人猛操日本美女一级片| 欧美日韩亚洲综合一区二区三区_| 性色av一级| 日韩av免费高清视频| 久久精品人人爽人人爽视色| 天堂俺去俺来也www色官网| 成人三级做爰电影| 90打野战视频偷拍视频| 久久精品久久久久久久性| 一级片'在线观看视频| 亚洲av电影在线进入| 欧美日韩黄片免| 多毛熟女@视频| 一级毛片黄色毛片免费观看视频| 欧美 日韩 精品 国产| 男女国产视频网站| 免费观看人在逋| 在线亚洲精品国产二区图片欧美| 欧美精品av麻豆av| 黄频高清免费视频| 自线自在国产av| 精品一区二区三区av网在线观看 | 两个人免费观看高清视频| 一本综合久久免费|