• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation study on penetration performance of depleted Uranium (DU) alloy fragments

    2021-01-20 08:05:30FulinZhuYangChenGuiliZhu
    Defence Technology 2021年1期

    Fu-lin Zhu.Yang Chen.Gui-li Zhu

    Sichuan Aerospace System Engineering Institute.Chengdu.610100.Sichuan.China

    Keywords: Depleted uranium alloy Constitutive model Adiabatic shear Penetration performance Numerical simulation

    ABSTRACT Due to its high strength.high density.high hardness and good penetration capabilities.Depleted uranium alloys have already shined in armor-piercing projectiles.There should also be a lot of room for improvement in the application of fragment killing elements.Therefore.regarding the performance of the depleted uranium alloy to penetrate the target plate.further investigation is needed to analyze its advantages and disadvantages compared to tungsten alloy.To study the difference in penetration performance between depleted uranium alloy and tungsten alloy fragments.firstly.a theoretical analysis of the adiabatic shear sensitivity of DU and tungsten alloys was given from the perspective of material constitutive model.Then.taking the cylindrical fragment penetration target as the research object.the penetration process and velocity characteristics of the steel target plates penetrated by DU alloy fragment and tungsten alloy fragment were compared and analyzed.by using finite element software ANSYS/LS-DYNA and Lagrange algorithm.Lastly.the influence of different postures when impacting target and different fragment shapes on the penetration results is carried out in the research.The results show that in the penetration process of the DU and tungsten alloy fragments.the self-sharpening properties of the DU alloy can make the fragment head sharper and the penetrating ability enhance.Under the same conditions,the penetration capability of cylindrical fragment impacting target in vertical posture is better than that in horizontal posture,and the penetration capability of the spherical fragment is slightly better than that of cylindrical fragment.

    1.Introduction

    Tungsten alloys are of high density,high strength,high hardness and can penetrate a certain strength of armor.They are widely used in armor-piercing projectiles.However.tungsten alloys are rare metals.expensive.lack of raw materials.and cannot be used on a large scale.Therefore.it is necessary to find a substitute for tungsten alloys.In recent years.many theoretical studies on depleted uranium alloys have been carried out all over the world.Eckmeyer[1]studied the effect of heat treatment on the properties of U-Ti alloys.It was found that the formation of uranium alloys and the solid solution enhancement effect of alloying elements in the solution can make the alloys twice stronger than other non-uranium alloys.Johnson and Cook[2]obtained data and fitted them through a large number of experiments.and proposed a J-C constitutive model.which gives the constitutive parameters of U-Ti alloy.He and Xiao [3]used the material testing machine and SHPB experimental device to study the compression mechanical behavior of UTi alloy at room temperature.and modified the Johnson-Cook model according to the experimental data.Yue and Qu [4]discovered that the DU alloy is more prone to adiabatic shearing and generate self-sharpness during the penetration process by studying the armor-piercing core material.which is more conducive to penetration.Shi Jie [5]and other scholars studied the forming mechanism of adiabatic shear band uranium-niobium alloys under impact load of artificial aging in different temperature via SHPB experiment.

    Although there are many studies on DU alloys all over the world,most of them focus on the material"s own performance.and there are few reports on the penetration target of DU alloy as a killing fragment.

    In this study,the self-sharpness theory of materials was used to analyze the penetrating properties of DU alloy and tungsten alloy.Then.the DU alloy fragments and tungsten alloy fragments weresimulated to penetrate Q235 steel based on ANSYS/LS-DYNA software,and the influence of target-impacting postures and shapes on penetration ability were analyzed.so as to provide a theoretical basis for the resource-rich DU alloy fragments to replace the resource-deficient tungsten alloy fragments.

    2.Simulation model and parameters

    2.1.Selection of material parameters

    In the numerical calculation.the DU alloy.tungsten alloy and Q235 steel will produce large stress and strain.and the Johnson-Cook model widely used in engineering can accurately describe materials with the large strain and high strain rate[6].In this study,Johnson-Cook strength model was used.Its specific expression is shown in equation (1):

    where:σ is the equivalent stress.ε is the equivalent strain.˙ε is the strain rate.˙ε0is the reference strain rate (for the convenience of calculation.the value can be 1); T*=(T -Tr)/(Tm-Tr) is the similar temperature; Tmand Trare the melting temperature and room temperature of the material,respectively.A is the yield stress under reference strain rate and reference temperature,B and n are the strain hardening coefficients.C is the strain rate hardening coefficient.and m is the temperature softening coefficient [7].

    Johnson-Cook"s cumulative failure model expression is as follows:

    In the formula:σ*=p/σεqis the ratio of hydrostatic pressure to equivalent pressure; D1-D5are the failure parameters of the material.

    The relevant physical properties of the depleted uranium alloy,tungsten alloy and Q235 steel material were obtained from the SHPB experiment.and the parameters were from the literature[8-13].as shown in Table 1.

    2.2.Finite element model

    Fig.1.Finite element model.

    The calculation model uses the fragments are cylindrical and spherical fragments with the same quality to penetrate the Q235 steel.The length/diameter ratio of the cylindrical fragments is 1,and the diameters are Φ6.1 × 6.1 and Φ7 mm.respectively.The fragments are flat. and the target plate size is 100 mm × 100 mm × 15 mm.Using Solid 164 elements to divide grids.and the Lagrange algorithm is used between the fragment and the semi-infinite target plate,and the contact type is defined as erosion contact (*CONTACT-ERODING-SURFACE-TO-SURFACE).In order to improve the calculation accuracy,the mesh is densitied at the center of the target.the size of the encryption area is 0.4 mm,and the size of the non-dense area is 3.0 mm.a total of 193471 nodes and 182500 elements are obtained.The cylindrical fragment grid size is 0.2 mm,and a total of 11916 nodes and 10500 elements are obtained; The spherical fragment grid size is 0.2 mm,which is divided into 12691 nodes and 11664 elements.The outer boundary of the target plate is set as stress non reflection boundary to simulate an infinite region.and the unit system is cm-g-μs-Mbar.The structure of the finite element model is shown in Fig.1.

    3.Material self-sharpness analysis

    Compared with tungsten alloy.DU alloy has obvious selfsharpness.The main reason is that the adiabatic shear sensitivity of DU alloy material is bigger than that of tungsten alloy.which is more prone to adiabatic shear failure.resulting in the continuous peeling and detachment of bullet head along the shear band,so that the warhead is getting sharper and sharper.as shown in Fig.2(a),this is also the reason why the DU alloy has a higher penetration capability.However.due to the characteristics of tungsten alloy materials,“mushroom heads”are often formed during the piercing process.As shown in Fig.2(b).adiabatic shear failure occurs only under high strain rates,so the piercing capability is relatively lower.

    Tungsten alloys and DU alloys undergo plastic deformation after stress,and rapidly produce strain hardening and thermal softening effects.However.due to the high melting point of tungsten.softening requires greater deformation and higher temperature.Therefore,it is defined according to Ref.[14]formulas of adiabatic shear parameters for different materials:

    Table 1 Material model parameters.

    Fig.2.Penetration Process Comparision of tungsten alloy and DU alloy.

    Among them,K and Cpare the thermal conductivity and specific heat capacity of the material,respectively,h is the gate width of the shear band.and ˙ε is the initial shear strain rate.The smaller the value of k,the more likely it is to form an adiabatic shear band.And when the strain rate and the shear bandwidth are the same.the value of K/Cpdetermines the relative tendency of different materials to form adiabatic shear bands.The smaller the ratio,the easier it is.The data in Table 2 lists the adiabatic shear parameters of different materials.It can be seen from the table that the ratio of uranium is significantly smaller than that of tungsten,so it is easier to form adiabatic shear bands.This is consistent with the results in the literature [15]that can promote the formation of adiabatic shear bands at lower strain rates.Therefore.DU alloys are more likely to form adiabatic shear bands than tungsten alloys.

    Therefore.based on the above.the adiabatic shear failure mechanism of the two materials under dynamic compression conditions can be described as follows: The process of projectile penetration into the target is a high strain rate process.Under this condition,the entire deformation time of the material is very short.Most of the plastic work is converted into heat.and there is not enough time disperse the heat into the surroundings.resulting in an increase in the temperature of the material.The process is approximately adiabatic.According to the Johnson-Cook constitutive equation in (1).the stress of the material increases with the increase of strain and strain rate,and decreases with the increase of temperature.namely strain strengthening effect.strain rate strengthening effect and temperature thermal softening effect.Under high strain rate conditions.when the temperature of the adiabatic process rises to a certain extent.and the temperature softening effect of the material exceeds the hardening effect of strain and strain rate,thermoplastic instability begins to occur,that is,adiabatic shear fails.However,tungsten alloy is a material that is sensitive to strain rate and temperature.When the strain is small,elastic deformation and uniform plastic deformation occur.theflow stress greatly increases.and obvious strain hardening effect appears.As the strain and strain rate increase.the tungsten alloy will produce strong non-uniform plastic deformation.Due to the extremely short deformation time,the deformation work is almost completely converted into heat,and the temperature rises rapidly.At this time.the thermal softening effect gradually takes the leading role.and the strain hardening effect is weakened.Thereafter.the deformation of the tungsten alloy has it develops in two directions:one is the overall thermal softening of the tungsten alloy head to form a “mushroom head”.as shown in Fig.2(b).and the other is to form a local adiabatic shear band along the direction of the maximum shear force.as shown in Fig.3.Moreover.under dynamic compression conditions.tungsten alloys form adiabatic shear fractures by means of transgranular cleavage fracture.It is more difficult for tungsten alloys to achieve a large number of transgranular cleavage fractures.Therefore.the ability of tungsten alloys to form adiabatic shear failure to achieve self-sharpening properties of armor piercing is worse than that of DU alloys.

    Table 2 Adiabatic shear parameters of U、W.

    Fig.3.ASB forming process under dynamic compression loading in tungsten alloy.

    4.Simulation analysis

    4.1.Analysis of fragment penetration process

    In order to analyze the penetrating performance of DU and tungsten alloy fragments in Q235 steel target plate,the simulation calculation and analysis were carried out when the fragmentation velocity of DU and tungsten alloy was 1350 and 1400 m/s.When DU and tungsten alloy fragments were at a velocity of 1350 m/s.the penetration process is shown in Fig.4.respectively.

    It can be seen from Fig.4 (a) that in the initial stage of penetration(t=4 μs).the fragment opened a crater slightly larger than the bullet diameter in the target plate,and a bulge appeared on the front end surface of the target plate,and a spherical shock wave was generated in the target plate.As the penetration deepens(t=10 μs),the mesh near the contact surface was deleted for failure result from excessive deformation.the plastic deformation and small shear strain occurred on the fragment head.and the crater radius became significantly larger; in the middle of penetration(t=44 μs).due to the self-sharpening properties of the DU alloy,the fragment head gradually became sharp.and the crater radius gradually decreased to form a tapered hole;in the later penetration stage (t=70 μs).the steel target material in contact with the cone surface of the fragment undergone shear failure and broke,and the rear end surface of the target plate was cracked due to the bulging,and the target plate was cut into two small plug blocks; the two small plug blocks were completely off the target as the fragments continue to advance.At (t=130 μs).the fragment penetrates the target plate.

    It can be seen from Fig.4(b)that under the same conditions,the penetration performance of the tungsten alloy fragments and the DU alloy fragments during the initial penetration is slightly different; during the middle of penetration.the head of thetungsten alloy fragments does not become sharp.but gradually becomes round.It indicates that its self-sharp characteristic is worse than that of DU; as the fragment penetration deepens.the crack occurs on the back side of the target.but the fragment does not penetrate the target.Under the same conditions.the DU alloy can penetrate the target plate.while the tungsten alloy cannot,indicating that the penetration performance of the tungsten alloy fragments is slightly lower than the DU alloy fragments.Note that the penetration progress is basically a damage and fracture process[16-22].

    Fig.4.The Penetration Process of Fragments: DU alloy(a).tungsten alloy(b).

    4.2.Fragment penetration velocity analysis

    It can be seen from Fig.5 that in the initial stage of fragment penetration.the velocity attenuation is very fast due to the large target plate resistance when the crater is opened.and the difference begins to appear after 10 μs.Under the same velocity condition.the tungsten alloy penetration velocity decays significantly faster than that of DU alloy.After 100 μs,the two tend to be stable,the residual velocity of the DU alloy fragments is 129.1 and 172.4 m/s.respectively corresponding to an initial penetration velocity of 1350 and 1400 m/s,and the remaining maximum kinetic energy is 0.015 times of the initial kinetic energy,while the residual velocity of the tungsten alloy fragments is 0 and 147.1 m/s.and the remaining maximum kinetic energy is 0.011 times of the initial kinetic energy.Therefore,the residual penetrating ability of the DU alloy fragments is 1.36 times of the tungsten alloy fragments.

    Fig.5.Cylindrical fragmentation velocity-time Curve (Vertical penetration).

    4.3.Effect of fragmentation target-impacting posture on penetration performance

    In addition to further demonstrating that the penetrating power of DU alloy is superior to tungsten alloy.this simulation is mainly compared with (4.1) simulation to study the effect on penetration result with the fragmentation in horizontal attitude.

    The penetration process of DU alloy fragments and tungsten alloy fragments on Q235 steel is basically the same as (4.1).but in the early stage of penetration.the horizontally penetrating fragment head is a curved surface,and the self-sharp effect is not very obvious.but with the penetration deepens.cracks occur on the back of the target plate.At the same time,it can be found that the sharpness of the fragment head in horizontal penetration is not as good as that in vertical penetration.The main reason may be that the contact surface in the horizontal penetration is curved rather than plane.

    According to the data in Table 3 and Fig.6.comparing the vertical target-impacting with the horizontal target-impacting,whether the DU fragment or the tungsten fragment.at the same initial velocity.the target plate is not penetrated.or the target is penetrated in vertical target-impacting.not in horizontal.or the target is penetrated in both cases.but the remaining velocity in vertical target-impacting is higher.Seen from the analysis of Fig.7(tungsten on the left and DU on the right).in the case when the target plate is not penetrated.the DU alloy fragments cause shear cracking on the target plate while the W alloy does not,only causes cracking on the back surface of the target plate,and the penetration depth of the DU alloy is significantly larger than that of tungsten fragments.The results are consistent with section 3 self-sharpness analysis.Therefore.under conditions of horizontal targetimpacting.the penetration ability of DU alloy fragments is still better than that of tungsten alloy.and it can also be said that the penetration capability of vertical target-impacting is better than that of horizontal target-impacting.

    After penetration.the shape comparison between the DU fragment and the tungsten fragment is shown in Fig.8(DU on the left and tungsten on the right).It can be seen from Fig.8 that the head of the DU fragment is sharper than the tungsten fragment.This result is in good agreement with the self-sharpness analysis in chapter three.

    4.4.Effect of fragment shape on penetration performance

    From the simulation results of (4.3).it can be seen that the target-impacting posture of the fragment has an influence on the penetration result.and the horizontal penetration ability of the fragment is slightly lower than that of the vertical penetration.In order to avoid adverse effects.this group of simulations will be vertically penetrated with the cylindrical shape in(4.1)as a control group.simulating spherical fragments of the same quality penetrating the Q235 target.so that there is no difference between vertical penetration and horizontal penetration.The simulation velocities are 1350 and 1400 m/s.

    It can also be seen from Fig.9 that the penetration velocity of the tungsten alloy fragments is attenuated rapidly.This is because in the middle of penetration process.the temperature gradually increases with the advancement of the penetration; for tungsten alloy material.the strain rate sensitivity reduces as temperature increases,causing the head of the fragment to be rounded,which in turn leads to a decrease in its penetration ability.In contrast,as thetemperature of the DU alloy fragments increases.its strain rate increases.and the plastic deformation increases.resulting in adiabatic shearing.which makes the fragment head sharper and the penetration ability enhanced.

    Table 3 Effect of target-impacting attitude on penetration performance.

    Fig.6.Cylindrical fragmentation velocity-time curve (horizontal penetration).

    Fig.7.Penetration Comparison of DU and fragment.

    Fig.8.Comparison of DU and Tungsten fragment shapes.

    Fig.9.Spherical fragment velocity-time curve.

    According to Table 4.the residual velocities of the spherical DU alloy fragments are 152.9 and 272 m/s.respectively.while the residual velocities of the spherical tungsten alloy fragments are 18.2 and 178 m/s,respectively,both of which penetrate the target plate.The maximum residual velocity of the spherical DU alloy fragment is 1.58 times of that of the cylindrical shape.and the remaining maximum kinetic energy is 0.038 times of the initial kinetic energy;while the maximum residual velocity of the spherical tungsten alloy fragment is 1.21 times of that of the cylindrical shape,and the remaining maximum kinetic energy is 0.016 times of the initial kinetic energy.Therefore,the maximum residual penetration of the DU alloy fragments is 2.375 times of the tungsten alloy fragments.Under the same conditions.the higher the velocity.the better the penetrating ability.When the velocity and quality is the same.the penetrating performance of the spherical fragment is superior to that of the cylindrical fragment.

    5.Conclusions

    1) It was found that during the penetration process of the DU alloy fragments and tungsten alloy fragments.the self-sharpening property of DU alloy makes the fragment head sharper and improves the penetrating ability of the DU alloy fragments.

    2) Under the condition of the same variables.the penetration performance of the DU alloy fragments is superior to that of the tungsten fragments whatever kind the penetration is.

    3) When the other variables are the same and the initial velocity is 1400 m/s.the residual penetrating ability of the cylindrical DU alloy fragments is 1.36 times of that of the tungsten alloy fragments.The residual penetrating ability of the spherical DU alloy fragments is 2.375 times of that of the tungsten alloy.Therefore,the penetrating performance of the DU alloy fragments is better than that of tungsten alloy fragments.

    4) The shapes of the fragment will have an effect on the penetration results.Under the same conditions of other variables.the maximum residual velocity of the spherical DU alloy fragment is 1.58 times of that of the cylindrical fragment; the maximum residual velocity of the spherical tungsten alloy fragment is 1.21 times of that of the cylindrical fragment.

    Table 4 Effect of fragment shape on penetration performance.

    Declaration of competing interest

    I declared that there has no conflicts of interest to this work.I declare that I do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

    Acknowledgement

    This study did not receive any funding from funding agencies in the public.commercial or non-profit sectors.

    国产免费一区二区三区四区乱码| 99九九线精品视频在线观看视频| 秋霞伦理黄片| 亚洲自偷自拍三级| 免费大片黄手机在线观看| 国产免费又黄又爽又色| 国产av精品麻豆| 久久久久久人妻| 18禁在线播放成人免费| 久久精品国产自在天天线| 国产高清不卡午夜福利| 国产av一区二区精品久久| 亚洲国产欧美日韩在线播放 | 国产成人精品无人区| 伦精品一区二区三区| 在线观看美女被高潮喷水网站| 久久99精品国语久久久| 欧美+日韩+精品| 女的被弄到高潮叫床怎么办| 久久精品久久精品一区二区三区| 亚洲综合色惰| 熟女av电影| 免费在线观看成人毛片| 国产 精品1| 国产日韩一区二区三区精品不卡 | 国产成人精品婷婷| 亚洲精品视频女| 亚洲精品自拍成人| 亚洲av日韩在线播放| 精品视频人人做人人爽| 欧美 亚洲 国产 日韩一| 国产亚洲最大av| 又粗又硬又长又爽又黄的视频| 九色成人免费人妻av| 欧美精品一区二区大全| 99热6这里只有精品| 国产亚洲午夜精品一区二区久久| 国产av码专区亚洲av| 精品国产一区二区三区久久久樱花| 美女脱内裤让男人舔精品视频| 国产爽快片一区二区三区| 国产视频首页在线观看| 日韩制服骚丝袜av| 精品久久久久久久久亚洲| 边亲边吃奶的免费视频| 国产免费福利视频在线观看| 国产成人精品无人区| 亚洲中文av在线| 亚洲图色成人| 成人二区视频| 一本久久精品| 国产精品女同一区二区软件| av天堂久久9| 偷拍熟女少妇极品色| 天堂8中文在线网| av播播在线观看一区| 99精国产麻豆久久婷婷| 免费黄频网站在线观看国产| 99久久人妻综合| 青青草视频在线视频观看| 午夜日本视频在线| 亚洲成色77777| 亚洲无线观看免费| 日韩视频在线欧美| 又爽又黄a免费视频| 黑人巨大精品欧美一区二区蜜桃 | 国产精品久久久久久精品古装| 又粗又硬又长又爽又黄的视频| 看非洲黑人一级黄片| 亚洲精品aⅴ在线观看| av有码第一页| 久久这里有精品视频免费| 久久久久久人妻| 国产中年淑女户外野战色| 精品少妇久久久久久888优播| 亚洲伊人久久精品综合| 欧美日韩精品成人综合77777| 亚洲国产精品专区欧美| 久久热精品热| 久久狼人影院| av卡一久久| 观看美女的网站| 嫩草影院入口| 91久久精品国产一区二区成人| 亚洲av.av天堂| 欧美亚洲 丝袜 人妻 在线| 精品国产乱码久久久久久小说| 99久久中文字幕三级久久日本| 极品人妻少妇av视频| 中文字幕人妻丝袜制服| 欧美变态另类bdsm刘玥| 日本91视频免费播放| 欧美 亚洲 国产 日韩一| 综合色丁香网| 欧美日韩视频高清一区二区三区二| 国产精品女同一区二区软件| 精品少妇久久久久久888优播| 国内揄拍国产精品人妻在线| 久久99精品国语久久久| 亚洲精品视频女| 国产精品一区二区性色av| 高清黄色对白视频在线免费看 | 久久午夜福利片| 99久国产av精品国产电影| 大片免费播放器 马上看| 黑人高潮一二区| 亚洲美女视频黄频| 美女大奶头黄色视频| 免费观看在线日韩| 成人毛片60女人毛片免费| 亚洲精品视频女| 26uuu在线亚洲综合色| 久久久亚洲精品成人影院| 精品视频人人做人人爽| 精品一品国产午夜福利视频| 熟女av电影| 老司机影院毛片| 欧美变态另类bdsm刘玥| 久久精品国产鲁丝片午夜精品| 韩国高清视频一区二区三区| 亚洲欧美日韩另类电影网站| 亚洲国产精品成人久久小说| 麻豆成人午夜福利视频| 国产精品熟女久久久久浪| 人妻人人澡人人爽人人| 亚洲精品国产色婷婷电影| 久久综合国产亚洲精品| 国产成人免费观看mmmm| av在线观看视频网站免费| 久久99一区二区三区| 亚洲电影在线观看av| 色网站视频免费| 黄色日韩在线| 成人免费观看视频高清| 精品少妇黑人巨大在线播放| 欧美老熟妇乱子伦牲交| a级一级毛片免费在线观看| 久久精品熟女亚洲av麻豆精品| 欧美97在线视频| 午夜影院在线不卡| 中文在线观看免费www的网站| 涩涩av久久男人的天堂| 国产亚洲av片在线观看秒播厂| 国产亚洲一区二区精品| 亚洲欧美中文字幕日韩二区| 国产精品嫩草影院av在线观看| 在线观看www视频免费| 99久久人妻综合| 黄色配什么色好看| 欧美激情国产日韩精品一区| 久久久欧美国产精品| 国产伦理片在线播放av一区| 亚洲成人av在线免费| 人妻夜夜爽99麻豆av| 成年美女黄网站色视频大全免费 | 十八禁高潮呻吟视频 | 哪个播放器可以免费观看大片| 99久久中文字幕三级久久日本| 夫妻午夜视频| 久久精品国产自在天天线| 亚洲伊人久久精品综合| 久久久久久伊人网av| 我的女老师完整版在线观看| 日韩不卡一区二区三区视频在线| 亚州av有码| 免费大片18禁| 亚洲欧美一区二区三区国产| 国产精品久久久久久精品古装| 亚洲精品456在线播放app| 国产成人精品一,二区| 精品视频人人做人人爽| 另类亚洲欧美激情| 国产欧美亚洲国产| 交换朋友夫妻互换小说| av福利片在线| 五月玫瑰六月丁香| 日日撸夜夜添| 国产欧美日韩综合在线一区二区 | 国产精品国产三级国产av玫瑰| 日韩强制内射视频| 久久精品国产自在天天线| 日本av免费视频播放| 国产一区二区在线观看日韩| 久久久久久伊人网av| 少妇的逼好多水| 偷拍熟女少妇极品色| 午夜老司机福利剧场| 国产黄色视频一区二区在线观看| 精品99又大又爽又粗少妇毛片| 国产亚洲av片在线观看秒播厂| 久久国产精品男人的天堂亚洲 | 看非洲黑人一级黄片| 在线观看免费日韩欧美大片 | 亚洲第一区二区三区不卡| 日本-黄色视频高清免费观看| 国产成人精品久久久久久| 亚洲av欧美aⅴ国产| 免费高清在线观看视频在线观看| av在线观看视频网站免费| 国产熟女午夜一区二区三区 | 亚洲美女黄色视频免费看| 久久精品国产自在天天线| 少妇人妻久久综合中文| av天堂久久9| 夫妻午夜视频| 人人妻人人添人人爽欧美一区卜| 18禁在线无遮挡免费观看视频| 成年人午夜在线观看视频| 婷婷色av中文字幕| 亚洲精品日本国产第一区| 亚洲综合精品二区| 韩国av在线不卡| 欧美精品高潮呻吟av久久| 国产成人精品福利久久| 一区二区三区精品91| 亚洲内射少妇av| 国产精品人妻久久久影院| 亚洲欧美日韩卡通动漫| 国产中年淑女户外野战色| 国产免费又黄又爽又色| 久久久久国产网址| 日本免费在线观看一区| 欧美日韩综合久久久久久| 肉色欧美久久久久久久蜜桃| 国内少妇人妻偷人精品xxx网站| 日本与韩国留学比较| 日本vs欧美在线观看视频 | 久久久久久久亚洲中文字幕| 丁香六月天网| 日韩欧美一区视频在线观看 | 一级二级三级毛片免费看| videossex国产| 日本黄色片子视频| 免费人成在线观看视频色| 亚洲经典国产精华液单| 日本午夜av视频| 国产成人91sexporn| 高清av免费在线| 亚洲情色 制服丝袜| 日韩免费高清中文字幕av| 亚洲国产成人一精品久久久| 国产高清三级在线| 日韩,欧美,国产一区二区三区| 男人舔奶头视频| 国产成人精品婷婷| 亚洲精品国产av成人精品| 亚洲人成网站在线播| 久久久欧美国产精品| 国产精品欧美亚洲77777| 欧美性感艳星| 大香蕉97超碰在线| 国产在线一区二区三区精| 精品少妇黑人巨大在线播放| 日韩精品免费视频一区二区三区 | 五月开心婷婷网| 亚洲精品日韩在线中文字幕| 亚洲av.av天堂| 成人18禁高潮啪啪吃奶动态图 | 极品人妻少妇av视频| 中国三级夫妇交换| 中文字幕av电影在线播放| 三上悠亚av全集在线观看 | 久久人妻熟女aⅴ| av播播在线观看一区| 爱豆传媒免费全集在线观看| 少妇裸体淫交视频免费看高清| 人妻人人澡人人爽人人| 国产精品国产三级国产专区5o| 十八禁高潮呻吟视频 | 国产一区亚洲一区在线观看| 久久青草综合色| 成人无遮挡网站| 国产69精品久久久久777片| 国产又色又爽无遮挡免| 交换朋友夫妻互换小说| xxx大片免费视频| 一级片'在线观看视频| 精品久久久久久久久av| 视频中文字幕在线观看| 热99国产精品久久久久久7| 亚洲国产精品国产精品| 欧美日韩综合久久久久久| 桃花免费在线播放| 国产黄片视频在线免费观看| 天堂俺去俺来也www色官网| 日韩电影二区| 免费观看在线日韩| 欧美精品国产亚洲| 国产中年淑女户外野战色| 又黄又爽又刺激的免费视频.| 欧美+日韩+精品| 一级毛片黄色毛片免费观看视频| 亚洲人成网站在线观看播放| 99视频精品全部免费 在线| 欧美区成人在线视频| 91aial.com中文字幕在线观看| 亚洲精品乱久久久久久| 好男人视频免费观看在线| 欧美精品高潮呻吟av久久| 午夜日本视频在线| 99热国产这里只有精品6| 99久久中文字幕三级久久日本| 一级毛片电影观看| 性色avwww在线观看| 一个人免费看片子| av黄色大香蕉| 日韩成人伦理影院| 日本与韩国留学比较| 校园人妻丝袜中文字幕| 久久久久久久大尺度免费视频| 久久久精品免费免费高清| 欧美最新免费一区二区三区| 日本与韩国留学比较| 伦理电影免费视频| 日本欧美国产在线视频| 欧美一级a爱片免费观看看| 在线观看av片永久免费下载| 2018国产大陆天天弄谢| 夜夜骑夜夜射夜夜干| 极品少妇高潮喷水抽搐| 精品一品国产午夜福利视频| 国产欧美亚洲国产| 亚洲国产av新网站| 国产成人a∨麻豆精品| 高清在线视频一区二区三区| 久久99一区二区三区| 伦理电影免费视频| 热re99久久国产66热| 最近的中文字幕免费完整| 精品久久久噜噜| 精品熟女少妇av免费看| 七月丁香在线播放| 毛片一级片免费看久久久久| 纯流量卡能插随身wifi吗| 99re6热这里在线精品视频| 亚洲精品日韩在线中文字幕| a级毛片免费高清观看在线播放| 乱系列少妇在线播放| 成人综合一区亚洲| 亚洲av中文av极速乱| 日韩三级伦理在线观看| 大片免费播放器 马上看| 一级av片app| 国产成人一区二区在线| 婷婷色麻豆天堂久久| 一级a做视频免费观看| 欧美 亚洲 国产 日韩一| 极品少妇高潮喷水抽搐| 国产白丝娇喘喷水9色精品| 国产熟女午夜一区二区三区 | 精华霜和精华液先用哪个| 国产综合精华液| 国产精品久久久久久精品电影小说| 精品99又大又爽又粗少妇毛片| 性高湖久久久久久久久免费观看| 亚洲综合色惰| 乱系列少妇在线播放| 久久久久久久久久成人| 搡女人真爽免费视频火全软件| 97在线视频观看| 丰满少妇做爰视频| 乱码一卡2卡4卡精品| 日韩 亚洲 欧美在线| 精品人妻一区二区三区麻豆| 亚洲精品aⅴ在线观看| av国产精品久久久久影院| 高清毛片免费看| 免费观看在线日韩| 国产精品三级大全| 麻豆精品久久久久久蜜桃| 国产精品人妻久久久久久| 日韩伦理黄色片| 久久国内精品自在自线图片| 18+在线观看网站| 国产熟女午夜一区二区三区 | 各种免费的搞黄视频| 久久久久久久精品精品| 国产精品久久久久久精品古装| 欧美老熟妇乱子伦牲交| 久久久久精品久久久久真实原创| 色婷婷久久久亚洲欧美| 熟女av电影| 亚洲国产精品专区欧美| 亚洲va在线va天堂va国产| 久久久久久久大尺度免费视频| 亚洲成色77777| 国产欧美另类精品又又久久亚洲欧美| 在现免费观看毛片| 中文在线观看免费www的网站| 国产成人精品福利久久| av又黄又爽大尺度在线免费看| 最后的刺客免费高清国语| 国产伦精品一区二区三区四那| 街头女战士在线观看网站| 国产亚洲午夜精品一区二区久久| 国产精品国产三级国产专区5o| .国产精品久久| 黑人高潮一二区| 欧美精品亚洲一区二区| 欧美变态另类bdsm刘玥| 黄片无遮挡物在线观看| 日日摸夜夜添夜夜爱| av专区在线播放| 91aial.com中文字幕在线观看| 午夜福利影视在线免费观看| 精品一品国产午夜福利视频| 日本与韩国留学比较| 我要看日韩黄色一级片| 超碰97精品在线观看| 国产av码专区亚洲av| 久久影院123| av黄色大香蕉| 亚洲精品,欧美精品| 中文字幕精品免费在线观看视频 | 国产一区二区三区av在线| 久久久精品94久久精品| 少妇猛男粗大的猛烈进出视频| 亚洲成人一二三区av| 人人妻人人澡人人爽人人夜夜| www.色视频.com| 熟女人妻精品中文字幕| 国产一区二区三区综合在线观看 | 熟妇人妻不卡中文字幕| 插逼视频在线观看| 丰满乱子伦码专区| 久久久久久久国产电影| 亚洲电影在线观看av| 久久影院123| 久久精品国产亚洲av天美| 波野结衣二区三区在线| 各种免费的搞黄视频| 亚洲人与动物交配视频| 欧美激情国产日韩精品一区| 亚洲欧洲国产日韩| 99九九在线精品视频 | 搡女人真爽免费视频火全软件| 国产精品久久久久成人av| 欧美97在线视频| 免费人妻精品一区二区三区视频| 亚洲色图综合在线观看| 久久久国产欧美日韩av| 天天操日日干夜夜撸| 一级毛片久久久久久久久女| 亚洲精品国产av蜜桃| 免费观看在线日韩| 搡老乐熟女国产| 高清毛片免费看| 交换朋友夫妻互换小说| 少妇裸体淫交视频免费看高清| 乱人伦中国视频| 交换朋友夫妻互换小说| 色视频在线一区二区三区| 日日啪夜夜爽| 亚洲精品乱码久久久久久按摩| 欧美日韩av久久| 中文字幕制服av| 午夜日本视频在线| 国产精品熟女久久久久浪| 三级经典国产精品| 一级毛片久久久久久久久女| tube8黄色片| 自拍偷自拍亚洲精品老妇| 美女cb高潮喷水在线观看| 十八禁网站网址无遮挡 | 亚洲国产精品国产精品| 中文欧美无线码| 韩国av在线不卡| 永久网站在线| 亚洲欧美日韩卡通动漫| 日韩欧美一区视频在线观看 | 国产精品国产三级国产专区5o| 国产白丝娇喘喷水9色精品| 日韩av免费高清视频| 99久久人妻综合| 欧美精品一区二区免费开放| 亚洲欧美一区二区三区国产| 中文字幕人妻丝袜制服| 久久久久久久精品精品| 97超碰精品成人国产| 七月丁香在线播放| 啦啦啦啦在线视频资源| 日本黄大片高清| 少妇裸体淫交视频免费看高清| 夜夜爽夜夜爽视频| 3wmmmm亚洲av在线观看| 新久久久久国产一级毛片| 最新的欧美精品一区二区| 国产精品嫩草影院av在线观看| av有码第一页| 少妇裸体淫交视频免费看高清| av视频免费观看在线观看| 亚洲自偷自拍三级| 成年av动漫网址| 亚洲美女黄色视频免费看| 人妻人人澡人人爽人人| 内射极品少妇av片p| 夫妻午夜视频| 欧美精品高潮呻吟av久久| 成人国产麻豆网| 麻豆乱淫一区二区| 久久人妻熟女aⅴ| 国产成人a∨麻豆精品| 欧美人与善性xxx| 丰满乱子伦码专区| 美女中出高潮动态图| 最近最新中文字幕免费大全7| 狠狠精品人妻久久久久久综合| 亚洲精品亚洲一区二区| 国内精品宾馆在线| 99国产精品免费福利视频| 亚洲内射少妇av| 99热这里只有是精品50| 日韩制服骚丝袜av| 在线亚洲精品国产二区图片欧美 | 高清黄色对白视频在线免费看 | 欧美老熟妇乱子伦牲交| 一本—道久久a久久精品蜜桃钙片| 如何舔出高潮| 最新的欧美精品一区二区| 国产精品嫩草影院av在线观看| 成人亚洲精品一区在线观看| 在线观看国产h片| 秋霞伦理黄片| 日韩中文字幕视频在线看片| 黑人巨大精品欧美一区二区蜜桃 | 韩国高清视频一区二区三区| 成人毛片a级毛片在线播放| 2021少妇久久久久久久久久久| 欧美区成人在线视频| 国产免费一区二区三区四区乱码| 日日摸夜夜添夜夜添av毛片| 国产一区亚洲一区在线观看| 成年av动漫网址| 日本av免费视频播放| 最近的中文字幕免费完整| av.在线天堂| 国产精品久久久久久av不卡| 国产精品99久久久久久久久| 免费av中文字幕在线| 免费黄频网站在线观看国产| 69精品国产乱码久久久| 青春草国产在线视频| 日韩av不卡免费在线播放| 2021少妇久久久久久久久久久| 夫妻性生交免费视频一级片| av在线播放精品| 国产成人freesex在线| 亚洲情色 制服丝袜| 欧美激情国产日韩精品一区| 啦啦啦中文免费视频观看日本| 亚洲久久久国产精品| 在线观看美女被高潮喷水网站| 欧美+日韩+精品| 黄片无遮挡物在线观看| 夜夜骑夜夜射夜夜干| 国产成人精品久久久久久| 国产精品嫩草影院av在线观看| 亚洲av日韩在线播放| 国产在视频线精品| 国产白丝娇喘喷水9色精品| 久久青草综合色| 亚洲精品一二三| 中文精品一卡2卡3卡4更新| 青春草视频在线免费观看| 黑人高潮一二区| 乱码一卡2卡4卡精品| 又粗又硬又长又爽又黄的视频| 久久这里有精品视频免费| 丰满迷人的少妇在线观看| 在线播放无遮挡| 日本爱情动作片www.在线观看| 国产在线免费精品| 能在线免费看毛片的网站| 永久免费av网站大全| 久久人人爽人人片av| 成人黄色视频免费在线看| 熟妇人妻不卡中文字幕| 爱豆传媒免费全集在线观看| 一级爰片在线观看| 欧美少妇被猛烈插入视频| 久久av网站| 中文字幕av电影在线播放| 免费av不卡在线播放| 一本久久精品| 欧美精品一区二区大全| 午夜激情福利司机影院| 深夜a级毛片| 熟妇人妻不卡中文字幕| 2022亚洲国产成人精品| 男人狂女人下面高潮的视频| 日韩伦理黄色片| 丁香六月天网| 大码成人一级视频| 久久久精品免费免费高清| 久久ye,这里只有精品| 在线精品无人区一区二区三| 亚洲成人手机| 久久99一区二区三区| 一级黄片播放器| 亚洲天堂av无毛| 久久久久久人妻| 99久久中文字幕三级久久日本| 精品亚洲成a人片在线观看| 亚洲国产欧美在线一区| 成年女人在线观看亚洲视频| 亚洲欧洲精品一区二区精品久久久 | 日韩成人av中文字幕在线观看| 人妻 亚洲 视频| 人人澡人人妻人| 国产在线免费精品| 插阴视频在线观看视频| 国产精品一区二区性色av| av女优亚洲男人天堂| 日日啪夜夜撸| 亚洲av综合色区一区|