• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Machine Learning for Next-generation Printed Technologies

    2021-09-10 20:47:18LittyV.ThekkekaraShaminiP.BabyJefferyChanIvanCole

    Litty V.Thekkekara Shamini P. Baby Jeffery Chan Ivan Cole

    Abstract

    Modern science advances towards the development of lightweight wearable and portable applications for the promotion of human-machine interfaces. Among them, the most beneficial ones include the technologies for healthcare, telecommunications, and energy resources. Recent developments in the additive manufacturing otherwise 3D printing sector are promising for largescale applications. It promotes cost-effective production of technologies like sensors, lab on chips, solar cells, and energy storage. However, these applications' efficiency is lower to technologies fabricated using other methods like chemical approaches due to the non-optimized parameters involved in the fabrication and characterization phases. Machine learning on the other hand expands its science and engineering capabilities. It has a broader opportunity to support 3D printing to develop the potentials and efficiency through effective prediction methods for printing methods and design aspects. In this review, we discuss the use of machine learning prediction algorithms for technologies using 3D printing.

    1. Introduction

    Additive manufacturing (AM) [1], also known as 3D printing, is used to create objects using layer-by-layer fabrication methods using a CAD design model. Rapid fabrication time and better process control for even arbitrary shape formation from nano to mesoscale results in cost-effective interactive devices with minimum material wastage and lower energy requirements, ensuring the promising future of the 3D printing industries [2]. Different 3D printing methods include binder jetting, material extrusion, material jetting, powder bed fusion, sheet lamination, direct energy deposition, metal casting, and photopolymerization methods like dynamic laser printing (DLP) and Stereolithography (SLA) [3].

    It profoundly impacts areas like automotive, lightweight wearables, portable electronics, energy storage, solar cells, optics, bioengineering, medical applications, and the fashion industry [4]. The applications are not limited to the previously listed, as discovery of materials that support the more dimensions for the fabrication, like 4D printing promotes new applications [5].

    However, the 3D printing process-based applications have several limitations in achieving the best performance due to the non-optimal final structures [6]. The primary issue preventing the development of an ideal output structure using 3D printing processing could be the reduced heat dissipation time in the fabrication materials. It can lead to difficulties in developing desired shapes in the output with non-desired roughness. Besides, the stitching errors contributed by the 3D printing source can result in resolution issues, which results in misconfigured structures, voids, and interlayer spacing problems in the final output.

    Several other factors, like the mechanical delays in the printing system, non-coordination between computer software used for the control and the printing system, thermal relaxation of dynamic optical and other mechanical systems, non-optimization of the designs utilized, can influence the printing process [7]. In recent years, the utilization of artificial intelligence (AI) and its sub-fields like machine learning (ML) for 3D printing show a promise in developing a self-intelligent automated fabrication process through assistance in design, choosing material, material tuning, process optimization, in situ monitoring, defect recognition, cloud service, and cybersecurity [8].

    With the utilization of the processed information and data, the ML training network figure out how to make decisions [9]. ML is dynamic, implying that it can alter itself when exposed to more information. The 'learning' part of ML means that the algorithms attempt to limit the errors and boost likelihood of their predictions being valid.

    The field of ML has organized around three primary research: (1) task-oriented studies, involving the development and analysis of learning systems to improve performance in a predetermined set of tasks, (2) cognitive simulation used for investigation and computer simulation of human learning processes and finally, (3) analysis such as the theoretical space exploration of possible learning methods and algorithms independent of application domain [10].

    Deep Learning (DL) which is a subset of ML incorporates computational models and algorithms that imitate the architecture of the brains biological neural networks, which are termed artificial neural networks (ANNs)[11]. Deep Neural Networks (DNNs) are used in various applications, such as object recognition in images and acoustic processing for speech recognition [12]. Whenever the brain gets new data, it attempts to contrast with known data to make sense. The brain decodes the information through labeling and assigning the items to various categories, and DL employs the same concept.

    ‘Deep is a technical term and refers to the number of layers in an ANN. There are three types of layers: (a) an input layer (receives the input data), (b) a output layer (produces the result of data processing), and (3) the hidden layer (extracts the patterns within the data) [13]. While the information moves from one hidden layer to another, more superficial features recombine and recompose complex elements. DL works exceptionally well on unstructured data and has higher accuracy than traditional ML approaches for unsupervised training, but requires a considerable volume of training data, along with expensive hardware and software.

    Here, we discuss the current use of ML in 3D printing, and perspectives about the improvement in this area using advanced ML methodologies significantly to optimize the prefabrication design process, defect/failure detection, real-time 3D printing control/failure compensation, predictive maintenance, cost optimization and photopolymerization using ML-based algorithm to maximize control on chemicals and energy dose input.

    2. ML for 3D Printing Applications

    There has been a lot of recent interest in adopting ML methods for scientific and engineering applications using 3D printing[14]. Recently, a lot of attention has been given for printable graphical codes enabling a link between the physical and digital worlds, which is of great interest for anti-counterfeiting, Internet of Things (IoT), and brand protection applications[15].

    In a demonstrated work, an automated ML segmentation procedure to create a virtual object to be printed [16]. They made an accurate 3D printed core sample replicas using an ML image processing tool (MLIPT). Another application of ML technique s in the? prediction of the hole-filling in pin-in-paste technology[17]. A detailed evaluation of ML-based prediction methods is performed in this research, including artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (AFNIS), and gradient boosted decision trees to optimize the process parameters of pin-in-paste. Another relevant 3D printing application that has potential use is concrete printing. In this application, the ANN model optimizes the surface finish quality and potentially affects bonding strength between layers [18].

    In addition to all these printable applications, shape accuracy is an important performance measure or product built via 3D printing. Some works[19] adopted Gaussian process regression to capture spatial correlations. The printed 2-D and 3-D shapes are used to demonstrate the proposed modeling framework and derive new process insights for fabrication process. The proposal for developing a useful tool with the potential for broad application in planning and optimizing 3D printing of soft materials with Hierarchical ML algorithms (HML)[20]. HML algorithm predicts the problematic physical system behaviours using sparse data sets through the integration of physical modeling using statistical learning. This methodology simultaneously optimizes material, formulation, and process variables.

    In a report on manufacturing a 3D printer, the functional surfaces of printing medium are developed with DLs help[21]. This methodology is beneficial for printing highly biological samples like bone prosthetics, regenerative biomedicines, and fabrication directly on the human bodys internal organs like implantation of sensors for in-situ monitoring of lungs functioning and heart. 3D printing of biomaterials for tissue-engineering by utilizing random forest ML algorithms is a significant step towards more accurate and efficient biomedical applications [22] 3D printed personalized pharmaceuticals and medicines depending on the individual patient necessities are now accomplished using ML algorithms[23].

    ML applications in optical technologies attain exceptional attention in recent years.? The ML use gained rapid growth in the sectors like laser beam-material interactions for fundamental material science studies helped understand the physical and chemical property changes [24]. ML is used to enhance the disc's data storage capacity by fabricating the optical structures beyond the diffraction limit of light[25]. ML algorithms have helped to develop and discover better photonic designs for optical communications, augmented realities, displays, holography, meta-optics, adaptive optics, metrology, and quantum optics using 3D printing [26]. Apart from these studies, recently, researchers are successful in 3D printing a framework of multiple layers of diffractive surfaces, which in the collective form an optical analog of a neural network for statistical learning and termed as a diffractive deep neural network (D2NN)[26f]. In the framework, both the networks interference and prediction mechanism are all-optical through a computer-controlled design.

    We have summarized the ML applications in different steps of developing a 3D printing from material selection towards the optimization and characterization of the processed device in Figure 1.

    3. Challenges of ML use in 3D printing

    For ML, the training data is the critical input where having the right quality and quantity of data sets is essential to get accurate results. The larger the ML algorithms training data, it will more likely to help the model to see diverse types of objects, making it easier to recognize and generalize to diverse real-life scenarios. Data collection is a significant bottleneck in ML. We envision that requirement for (training) data play a larger role in specifying ML systems than for conventional methods. This information needs to be elicited from the problem domain and serves as an input[27].

    It is known that the major time for running ML end-to-end is spent on preparing the data, which includes collecting, cleaning, analyzing, visualizing, and feature engineering. There are two reasons for which data collection has recently become a critical issue. First, as ML is becoming more widely used, we can see new applications that do not necessarily have enough labeled data. Second, unlike traditional ML, deep learning techniques can be used by unsupervised training to generate automatic features, which saves feature engineering costs, but in return, may require more massive amounts of labeled data [27].

    Supervised ML models are successfully used to respond to a whole range of challenges. However, these models need more data, and their performance relies heavily on the size of training sets available. In many cases, it is not easy to create training datasets that are large enough, particularly for engineering tasks. It is impossible to precisely estimate the minimum amount of data required for AI projects. The nature of every project will significantly influence the amount of data we will need. Many 3D printing systems do record data during the builds, and that this data could be curated and collected to assist with ML. Besides, other factors such as ‘number of categories to be predicted and ‘model performance should be considered to make an accurate estimate.

    4. Perspectives

    There is a wide range of ML algorithms available, and their applications are immense. Here we can adopt a suitable method that gives minimum errors and maximum accuracy for our printing applications. It will enable the analysis to focus on the available scientific measurements and the actual optimization process using the essential experimental and simulated data points. One successful example in this field is a study conducted by Google Health to measure breast cancer signs with few input variables [28]. Another approach is in the designing of pharmacologically relevant chemical space with drug-like molecular entities on demand with limited training data [29]. The final model aims to have better accuracy and a lesser time frame than numerical simulations.

    Fault management is a functional area of systems management related to the detection, prediction, isolation, and prevention of faults. A model is trained by looking at the systems fault-free state, and can be used in all printing processes today as they have much simpler requirements to system expertise or data needed or training the fault-free models [30]. AI can have a more significant influence in the field of automating 3D printing workflows. The printability of an object can be analyzed before starting the fabrication process. The quality of a part can also be predicted, and the process can be controlled to avoid printing errors, effectively saving time. Material selection can also be automated with AI depending on the requirements of the design to be printed. A flowchart for the process is as shown in Figure 3 below.

    We propose a model that can predict accurate results with the supply of minimum input data for printable scientific applications using appropriate design and suitable materials. Using the data prediction aspects of machine learning by incorporating computer simulation, develop an ML model that can predict better and accurate results using lesser input data. The final model aims to have better accuracy and a more secondary time frame than numerical simulations. Design optimization of printable applications can be done with the help of a Deep Neural network (DNN), which is a self-learning model and accurate by nature. In this approach, performance improvement and optimization methodologies such as Backtracking in DNN [31] and Bayesian optimization [32] can be applied iteratively to get precise outcomes. At each iteration, local optima can be evolved, and that can be used as the input to the next iteration. In this way, the performance will increase and minimize errors, which will result in an optimized design model. A perspective for our hypothesis is given in Figure 4 below.

    In conclusion, we propose a model that can predict accurate results with minimum input data supply. We consider printable scientific applications using appropriate design, suitable materials, and optimization of the fabrication process. This research aims to utilize the data prediction aspects of ML by incorporating computer simulation techniques. In this process, we can develop an ML model that can predict better and accurate results using lesser input data for the feed loop mechanism.

    ACKNOWLEDGMENTS

    This research was supported (partially or fully) by the Australian Government through the Australian Research Councils Discovery Projects funding scheme (project DP170103174).

    AUTHOR CONTRIBUTIONS

    All authors contributed equally to the design, writing, and editing of the manuscript.

    COMPETING INTERESTS

    The authors declare no competing financial interests.

    Reference

    [1] I. Gibson, D. W. Rosen, B. Stucker, Additive manufacturing technologies, Springer, 2014.

    [2] a) H. Lipson, M. Kurman, Fabricated: The new world of 3D printing, John Wiley & Sons, 2013; b) B. Berman, Business horizons 2012, 55, 155; c) L. Jonu?auskas, D. Gailevi?ius, S. Rek?tyt?, T. Baldacchini, S. Juodkazis, M. Malinauskas, Optics express 2019, 27, 15205.

    [3] a) T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Nguyen, D. Hui, Composites Part B: Engineering 2018, 143, 172; b) S. Maruo, O. Nakamura, S. Kawata, Optics letters 1997, 22, 132; c) S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, Nature 2001, 412, 697.

    [4] a) J. Chang, T. Ge, E. Sanchez-Sinencio, presented at 2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS) 2012; b) A. Vanderploeg, S.-E. Lee, M. Mamp, International Journal of Fashion Design, Technology and Education 2017, 10, 170; c) S. Khan, L. Lorenzelli, R. S. Dahiya, IEEE Sensors Journal 2014, 15, 3164; d) Q. Yan, H. Dong, J. Su, J. Han, B. Song, Q. Wei, Y. Shi, Engineering 2018, 4, 729; e) C. Schubert, M. C. Van Langeveld, L. A. Donoso, British Journal of Ophthalmology 2014, 98, 159; f) J. A. Lewis, B. Y. Ahn, Nature 2015, 518, 42; g) S.-Y. Wu, C. Yang, W. Hsu, L. Lin, Microsystems & Nanoengineering 2015, 1, 1; h) Y. L. Kong, I. A. Tamargo, H. Kim, B. N. Johnson, M. K. Gupta, T.-W. Koh, H.-A. Chin, D. A. Steingart, B. P. Rand, M. C. McAlpine, Nano letters 2014, 14, 7017; i) G. Comina, A. Suska, D. Filippini, Lab on a Chip 2014, 14, 424; j) L. V. Thekkekara, M. Gu, Scientific reports 2017, 7, 45585; k) Y. Liu, T. T. Larsen-Olsen, X. Zhao, B. Andreasen, R. R. S?ndergaard, M. Helgesen, K. Norrman, M. J?rgensen, F. C. Krebs, X. Zhan, Solar energy materials and solar cells 2013, 112, 157; l) A. Ghilan, A. P. Chiriac, L. E. Nita, A. G. Rusu, I. Neamtu, V. M. Chiriac, Journal of Polymers and the Environment 2020, 1.

    [5] a) A. Mitchell, U. Lafont, M. Ho?yńska, C. Semprimoschnig, Additive Manufacturing 2018, 24, 606; b) D. Bourell, J. P. Kruth, M. Leu, G. Levy, D. Rosen, A. M. Beese, A. Clare, CIRP Annals 2017, 66, 659.

    [6] a) B. Ahuja, M. Karg, M. Schmidt, presented at Laser 3d manufacturing II 2015; b) S. Yang, Y. F. Zhao, The International Journal of Advanced Manufacturing Technology 2015, 80, 327; c) N. Kouraytem, X. Li, W. Tan, B. Kappes, A. Spear, Journal of Physics: Materials 2020.

    [7] a) D. I. Wimpenny, P. M. Pandey, L. J. Kumar, Advances in 3D Printing and Additive Manufacturing Technologies, Springer Singapore Pte. Limited, Singapore, SINGAPORE 2016; b) G. A. Adam, D. Zimmer, Rapid Prototyping Journal 2015.

    [8] a) U. Delli, S. Chang, Procedia Manufacturing 2018, 26, 865; b) Z. Jin, Z. Zhang, J. Ott, G. X. Gu, Additive Manufacturing 2020, 101696; c) H. Zhang, S. K. Moon, T. H. Ngo, ACS applied materials & interfaces 2019, 11, 17994; d) T. Wang, T.-H. Kwok, C. Zhou, S. Vader, Journal of manufacturing systems 2018, 47, 83; e) T. DebRoy, T. Mukherjee, H. Wei, J. Elmer, J. Milewski, Nature Reviews Materials 2020, 1; f) C. Wang, X. P. Tan, S. B. Tor, C. S. Lim, Additive Manufacturing 2020, 36, 101538; g) G. D. Goh, S. L. Sing, W. Y. Yeong, Artificial Intelligence Review 2020, 1; h) L. Scime, J. Beuth, Additive Manufacturing 2019, 25, 151; i) L. Scime, J. Beuth, Additive Manufacturing 2018, 19, 114; j) A. Caggiano, J. Zhang, V. Alfieri, F. Caiazzo, R. Gao, R. Teti, CIRP Annals 2019, 68, 451.

    [9] F. Pesapane, M. Codari, F. Sardanelli, European radiology experimental 2018, 2, 35.

    [10] R. MICHALSIK, J. Carbonell, L. MICHE, Palo Alto: Tioga Publishing,? 1983.

    [11] J. Schmidhuber, Neural networks 2015, 61, 85.

    [12] M. E. Morocho-Cayamcela, H. Lee, W. Lim, IEEE Access 2019, 7, 137184.

    [13] B. F. King Jr, Am Roentgen Ray Soc,? 2017.

    [14] D. Jakhar, I. Kaur, Clinical and experimental dermatology 2020, 45, 131.

    [15] O. Taran, S. Bonev, S. Voloshynovskiy, presented at ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2019.

    [16] A. Almetwally, H. Jabbari, Journal of Natural Gas Science and Engineering 2020, 76, 103192.

    [17] P. Martinek, O. Krammer, Computers & Industrial Engineering 2019, 136, 187.

    [18] W. Lao, M. Li, T. N. Wong, M. J. Tan, T. Tjahjowidodo, Virtual and Physical Prototyping 2020, 15, 178.

    [19] Q. Huang, Y. Wang, M. Lyu, W. Lin, IEEE Transactions on Automation Science and Engineering 2020.

    [20] A. Menon, B. Póczos, A. W. Feinberg, N. R. Washburn, 3D Printing and Additive Manufacturing 2019, 6, 181.

    [21] Z. Zhu, D. W. H. Ng, H. S. Park, M. C. McAlpine, Nature Reviews Materials 2021, 6, 27.

    [22] A. Conev, E. E. Litsa, M. R. Perez, M. Diba, A. G. Mikos, L. E. Kavraki, Tissue Engineering Part A 2020.

    [23] M. Elbadawi, B. Mu?iz Castro, F. K. H. Gavins, J. J. Ong, S. Gaisford, G. Pérez, A. W. Basit, P. Cabalar, A. Goyanes, International Journal of Pharmaceutics 2020, 590, 119837.

    [24] a) G. Casalino, Optics & Laser Technology 2018, 100, 165; b) J. Zhou, B. Huang, Z. Yan, J.-C. G. Bünzli, Light: Science & Applications 2019, 8, 1.

    [25] P. R. Wiecha, A. Lecestre, N. Mallet, G. Larrieu, Nature nanotechnology 2019, 14, 237.

    [26] a) J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, S. Lloyd, Nature 2017, 549, 195; b) F. N. Khan, Q. Fan, C. Lu, A. P. T. Lau, Journal of Lightwave Technology 2019, 37, 493; c) F. N. Khan, C. Lu, A. P. T. Lau, presented at 2018 Optical Fiber Communications Conference and Exposition (OFC) 2018; d) Z. A. Kudyshev, A. V. Kildishev, V. M. Shalaev, A. Boltasseva, Nanophotonics 2020, 1; e) L. Li, H. Ruan, C. Liu, Y. Li, Y. Shuang, A. Alù, C.-W. Qiu, T. J. Cui, Nature communications 2019, 10, 1; f) X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, A. Ozcan, Science 2018, 361, 1004; g) H. Ren, W. Shao, Y. Li, F. Salim, M. Gu, Science Advances 2020, 6, eaaz4261; h) S. You, J. Guan, J. Alido, H. H. Hwang, R. Yu, L. Kwe, H. Su, S. Chen, Journal of Manufacturing Science and Engineering 2020, 142.

    [27] J. P. Winkler, J. Gr?nberg, A. Vogelsang, presented at 2019 IEEE 27th International Requirements Engineering Conference (RE) 2019.

    [28] S. M. McKinney, M. Sieniek, V. Godbole, J. Godwin, N. Antropova, H. Ashrafian, T. Back, M. Chesus, G. C. Corrado, A. Darzi, Nature 2020, 577, 89.

    [29] M. Moret, L. Friedrich, F. Grisoni, D. Merk, G. Schneider, Nature Machine Intelligence 2020, 2, 171.

    [30] F. Baumann, D. Roller, presented at MATEC web of conferences 2016.

    [31] G. Chartrand, P. M. Cheng, E. Vorontsov, M. Drozdzal, S. Turcotte, C. J. Pal, S. Kadoury, A. Tang, Radiographics 2017, 37, 2113.

    [32] F. Archetti, A. Candelieri, Bayesian Optimization and Data Science, Springer, 2019.

    舔av片在线| 成人综合一区亚洲| av女优亚洲男人天堂| 免费大片18禁| 91麻豆精品激情在线观看国产| 国内精品美女久久久久久| 欧美xxxx黑人xx丫x性爽| 国内精品美女久久久久久| 国产毛片a区久久久久| 国产成人一区二区在线| 免费一级毛片在线播放高清视频| 女的被弄到高潮叫床怎么办 | 亚洲国产精品成人综合色| 国产精品国产三级国产av玫瑰| 悠悠久久av| 一个人看的www免费观看视频| 亚洲欧美日韩高清在线视频| 日韩欧美在线二视频| 国产单亲对白刺激| 亚洲最大成人手机在线| 99国产精品一区二区蜜桃av| 我要看日韩黄色一级片| 亚洲熟妇熟女久久| 成人三级黄色视频| 亚洲一区二区三区色噜噜| 少妇高潮的动态图| 国产大屁股一区二区在线视频| 熟女人妻精品中文字幕| 一夜夜www| 综合色av麻豆| 久久久久久久久大av| 亚洲国产精品sss在线观看| 日韩欧美国产一区二区入口| 一级黄色大片毛片| 国产精品国产高清国产av| 久久久久久久久久久丰满 | 欧洲精品卡2卡3卡4卡5卡区| 夜夜夜夜夜久久久久| 成年人黄色毛片网站| 国产一区二区三区在线臀色熟女| www.色视频.com| 日韩欧美精品v在线| 国产一区二区在线观看日韩| 最好的美女福利视频网| 最好的美女福利视频网| 国产av在哪里看| 一区二区三区高清视频在线| 91精品国产九色| 在线看三级毛片| 99九九线精品视频在线观看视频| 88av欧美| 五月玫瑰六月丁香| 国产高清视频在线播放一区| 亚洲中文字幕一区二区三区有码在线看| 国产一级毛片七仙女欲春2| 亚洲中文日韩欧美视频| 免费av观看视频| 麻豆一二三区av精品| 亚洲无线观看免费| 国产伦一二天堂av在线观看| 91在线观看av| 在线观看舔阴道视频| 午夜日韩欧美国产| 国产色爽女视频免费观看| 国产在线精品亚洲第一网站| 日本三级黄在线观看| 又爽又黄无遮挡网站| 成年免费大片在线观看| 国产成人av教育| 国产成人av教育| 欧美色欧美亚洲另类二区| 欧美xxxx黑人xx丫x性爽| 欧美成人一区二区免费高清观看| 亚洲精华国产精华精| 久久久久久久精品吃奶| 亚洲七黄色美女视频| 99九九线精品视频在线观看视频| 亚洲自偷自拍三级| 欧美黑人欧美精品刺激| 国产高清视频在线观看网站| 亚洲av成人av| 美女高潮喷水抽搐中文字幕| 天堂√8在线中文| 床上黄色一级片| 亚洲av日韩精品久久久久久密| 亚洲国产欧美人成| 女生性感内裤真人,穿戴方法视频| 国产一区二区激情短视频| 男女边吃奶边做爰视频| 久久久久久久午夜电影| 91麻豆精品激情在线观看国产| 久久婷婷人人爽人人干人人爱| 久久久久久伊人网av| 有码 亚洲区| a级毛片免费高清观看在线播放| 亚洲av日韩精品久久久久久密| 免费观看人在逋| 两个人视频免费观看高清| 日本a在线网址| 两个人视频免费观看高清| 丝袜美腿在线中文| 亚洲精华国产精华精| 中亚洲国语对白在线视频| 毛片女人毛片| 久99久视频精品免费| 国产精品一区www在线观看 | 熟妇人妻久久中文字幕3abv| 成人永久免费在线观看视频| 搡老熟女国产l中国老女人| 亚洲,欧美,日韩| 国产探花极品一区二区| 国产精品乱码一区二三区的特点| 成年版毛片免费区| 国产精品一区二区三区四区免费观看 | 久久久午夜欧美精品| 成年女人看的毛片在线观看| 亚洲一区二区三区色噜噜| av天堂在线播放| 国产一区二区在线观看日韩| www.色视频.com| 久久精品影院6| 国产精品自产拍在线观看55亚洲| 精品久久国产蜜桃| 俄罗斯特黄特色一大片| 国产黄色小视频在线观看| 亚洲国产精品成人综合色| 最近最新免费中文字幕在线| 一本久久中文字幕| 国产精华一区二区三区| 精品一区二区三区视频在线| 久久99热6这里只有精品| 国产亚洲欧美98| 亚洲av不卡在线观看| 最近最新中文字幕大全电影3| av黄色大香蕉| 最近最新中文字幕大全电影3| 午夜精品一区二区三区免费看| 在线国产一区二区在线| 波多野结衣巨乳人妻| 国产精品国产高清国产av| 中文亚洲av片在线观看爽| 人妻夜夜爽99麻豆av| 成人国产一区最新在线观看| 午夜影院日韩av| 久久精品国产自在天天线| 天堂√8在线中文| 久久久精品欧美日韩精品| 熟女人妻精品中文字幕| 亚洲精品456在线播放app | 人妻制服诱惑在线中文字幕| 欧美日韩综合久久久久久 | 久久精品夜夜夜夜夜久久蜜豆| 久久久久久久久大av| 国产一区二区在线av高清观看| 国产一区二区三区在线臀色熟女| 亚洲av第一区精品v没综合| 校园人妻丝袜中文字幕| 日日干狠狠操夜夜爽| 日韩高清综合在线| bbb黄色大片| 亚洲图色成人| 啦啦啦韩国在线观看视频| 国内精品一区二区在线观看| 麻豆成人av在线观看| 日本黄大片高清| 国产精品无大码| 男人舔女人下体高潮全视频| 天堂动漫精品| 欧美一区二区亚洲| 午夜福利在线观看吧| 亚洲人成伊人成综合网2020| 亚洲图色成人| 亚洲av中文字字幕乱码综合| 内射极品少妇av片p| 国产亚洲精品久久久久久毛片| 欧美+亚洲+日韩+国产| 国产伦精品一区二区三区视频9| 国产一区二区在线av高清观看| 欧美在线一区亚洲| 午夜精品久久久久久毛片777| 久久久国产成人精品二区| 国内精品久久久久精免费| 欧美绝顶高潮抽搐喷水| 免费在线观看影片大全网站| 欧美日韩精品成人综合77777| 亚洲国产欧洲综合997久久,| 最后的刺客免费高清国语| 一级黄片播放器| 国产精品女同一区二区软件 | 成人综合一区亚洲| 全区人妻精品视频| 婷婷精品国产亚洲av在线| 91麻豆av在线| 亚洲欧美日韩高清在线视频| 午夜福利在线观看免费完整高清在 | 麻豆国产av国片精品| 国产伦精品一区二区三区四那| 国产高潮美女av| 久久精品综合一区二区三区| 在现免费观看毛片| 尤物成人国产欧美一区二区三区| 免费无遮挡裸体视频| 村上凉子中文字幕在线| 国产蜜桃级精品一区二区三区| 亚洲天堂国产精品一区在线| 色5月婷婷丁香| 亚洲一区二区三区色噜噜| av国产免费在线观看| 国产一区二区亚洲精品在线观看| 久久6这里有精品| 国产精品一区www在线观看 | 久久香蕉精品热| 亚洲av中文av极速乱 | 久久久久性生活片| 男人狂女人下面高潮的视频| 精品久久久久久久久久免费视频| 欧美日韩国产亚洲二区| 我的老师免费观看完整版| 五月伊人婷婷丁香| 99在线人妻在线中文字幕| 国产黄色小视频在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲男人的天堂狠狠| 国产伦在线观看视频一区| 12—13女人毛片做爰片一| 国产蜜桃级精品一区二区三区| 国产精品精品国产色婷婷| 日韩亚洲欧美综合| 久久久久久久久久久丰满 | 久久热精品热| 欧美黑人欧美精品刺激| 亚洲精华国产精华精| 亚洲成a人片在线一区二区| 久久久精品大字幕| 在线a可以看的网站| 国产三级在线视频| 欧美精品国产亚洲| 中亚洲国语对白在线视频| 成年女人毛片免费观看观看9| 久久久精品大字幕| 亚洲经典国产精华液单| 此物有八面人人有两片| 亚洲综合色惰| 成人午夜高清在线视频| 国产美女午夜福利| 欧美最黄视频在线播放免费| 久久久久国产精品人妻aⅴ院| 国产午夜精品久久久久久一区二区三区 | 免费大片18禁| 午夜爱爱视频在线播放| av专区在线播放| 国产免费一级a男人的天堂| 久久久成人免费电影| 欧美一区二区亚洲| 日本撒尿小便嘘嘘汇集6| 亚洲人成网站高清观看| 国产精品国产高清国产av| 人人妻人人澡欧美一区二区| 亚洲av免费在线观看| 99久久无色码亚洲精品果冻| 成人鲁丝片一二三区免费| a级一级毛片免费在线观看| 亚洲第一区二区三区不卡| 草草在线视频免费看| 免费搜索国产男女视频| 免费在线观看成人毛片| 久久久久久久久中文| 国产三级中文精品| 少妇的逼好多水| 禁无遮挡网站| 国产又黄又爽又无遮挡在线| 精品不卡国产一区二区三区| 草草在线视频免费看| 男女之事视频高清在线观看| 午夜精品久久久久久毛片777| 中文字幕久久专区| 国产精品一区二区性色av| 日韩欧美一区二区三区在线观看| 嫩草影院新地址| 亚洲欧美精品综合久久99| 欧美日本视频| 国产精品综合久久久久久久免费| 五月玫瑰六月丁香| 久久久久九九精品影院| 99久久成人亚洲精品观看| 亚洲色图av天堂| 丰满的人妻完整版| 日韩高清综合在线| 日韩欧美国产在线观看| 欧美区成人在线视频| 成人国产麻豆网| 欧美成人a在线观看| 国产精品久久电影中文字幕| 久久久久国产精品人妻aⅴ院| 国产精品无大码| 国产伦人伦偷精品视频| 亚洲一区高清亚洲精品| 久久久久国产精品人妻aⅴ院| 精品人妻视频免费看| 色播亚洲综合网| 中文字幕人妻熟人妻熟丝袜美| h日本视频在线播放| 丰满的人妻完整版| 禁无遮挡网站| 欧美一级a爱片免费观看看| 欧美最新免费一区二区三区| 亚洲美女视频黄频| 啦啦啦观看免费观看视频高清| 欧美+日韩+精品| 男人舔女人下体高潮全视频| 成人无遮挡网站| 久久久精品大字幕| 悠悠久久av| 中文字幕熟女人妻在线| 干丝袜人妻中文字幕| 国语自产精品视频在线第100页| 久久久久久伊人网av| 成年人黄色毛片网站| 免费在线观看日本一区| 午夜福利高清视频| 成人特级av手机在线观看| 很黄的视频免费| 免费看光身美女| 亚洲美女视频黄频| 日韩高清综合在线| 国产成人a区在线观看| 久久久久久九九精品二区国产| 长腿黑丝高跟| 非洲黑人性xxxx精品又粗又长| 在线观看舔阴道视频| eeuss影院久久| 亚洲va在线va天堂va国产| 国产高清三级在线| 成人特级黄色片久久久久久久| 有码 亚洲区| av女优亚洲男人天堂| 中文字幕av在线有码专区| 午夜影院日韩av| 欧美成人a在线观看| 乱码一卡2卡4卡精品| 91久久精品电影网| 深爱激情五月婷婷| 极品教师在线视频| 又紧又爽又黄一区二区| 国产男人的电影天堂91| 久久精品国产亚洲网站| 亚洲欧美日韩东京热| 国产免费av片在线观看野外av| 久久九九热精品免费| 成人精品一区二区免费| 自拍偷自拍亚洲精品老妇| 免费人成视频x8x8入口观看| 最近最新中文字幕大全电影3| 日韩人妻高清精品专区| 国内毛片毛片毛片毛片毛片| 亚洲avbb在线观看| 成人特级黄色片久久久久久久| 亚洲成人精品中文字幕电影| 日本免费一区二区三区高清不卡| 十八禁国产超污无遮挡网站| av.在线天堂| 久久精品国产清高在天天线| 91久久精品电影网| 看免费成人av毛片| 婷婷六月久久综合丁香| 久久久久九九精品影院| 日韩一区二区视频免费看| 最好的美女福利视频网| 国产精品久久视频播放| 欧美一级a爱片免费观看看| 国产av在哪里看| 色精品久久人妻99蜜桃| 亚洲av成人精品一区久久| 国产免费一级a男人的天堂| 免费大片18禁| 老师上课跳d突然被开到最大视频| 成人av一区二区三区在线看| 狂野欧美激情性xxxx在线观看| 久久精品国产亚洲网站| 又紧又爽又黄一区二区| 在线观看一区二区三区| 性插视频无遮挡在线免费观看| 天堂网av新在线| 精品久久久久久,| a在线观看视频网站| 黄色欧美视频在线观看| 日日啪夜夜撸| 免费搜索国产男女视频| av专区在线播放| 国产不卡一卡二| 男人和女人高潮做爰伦理| 特级一级黄色大片| 美女黄网站色视频| 热99re8久久精品国产| 黄色配什么色好看| 亚洲av成人av| 成年女人毛片免费观看观看9| 又紧又爽又黄一区二区| 欧美一区二区国产精品久久精品| 成年免费大片在线观看| 亚洲欧美日韩东京热| 国产精品国产三级国产av玫瑰| 精品人妻熟女av久视频| 欧美精品啪啪一区二区三区| 国产高清视频在线观看网站| 女人被狂操c到高潮| 亚洲中文字幕日韩| 国国产精品蜜臀av免费| 亚洲不卡免费看| 国产乱人视频| 99久久无色码亚洲精品果冻| 欧美潮喷喷水| 婷婷六月久久综合丁香| 日本欧美国产在线视频| 一个人看视频在线观看www免费| 十八禁网站免费在线| 国产精品久久久久久久久免| 国产精品亚洲一级av第二区| a级毛片免费高清观看在线播放| 亚洲美女搞黄在线观看 | 成人高潮视频无遮挡免费网站| 国产私拍福利视频在线观看| 桃色一区二区三区在线观看| av天堂中文字幕网| 国产成人福利小说| 特大巨黑吊av在线直播| 免费在线观看影片大全网站| 欧美在线一区亚洲| 日日摸夜夜添夜夜添小说| 久久精品夜夜夜夜夜久久蜜豆| 在线免费十八禁| 久久香蕉精品热| 一个人免费在线观看电影| 午夜精品一区二区三区免费看| 婷婷色综合大香蕉| 麻豆国产av国片精品| 欧美日韩瑟瑟在线播放| 精品久久久久久久久av| 国产久久久一区二区三区| 亚洲精品亚洲一区二区| 97热精品久久久久久| 尾随美女入室| 色吧在线观看| 国产视频内射| 国产一区二区三区视频了| 两个人视频免费观看高清| av专区在线播放| 免费看av在线观看网站| 国产精品亚洲美女久久久| 香蕉av资源在线| 亚洲一区高清亚洲精品| 悠悠久久av| 亚洲精品影视一区二区三区av| 国产精品野战在线观看| 九九久久精品国产亚洲av麻豆| 麻豆精品久久久久久蜜桃| 又紧又爽又黄一区二区| 我要搜黄色片| a级一级毛片免费在线观看| 九九久久精品国产亚洲av麻豆| 国产亚洲欧美98| 国产高清视频在线播放一区| 亚洲欧美日韩卡通动漫| 免费av观看视频| 国产成年人精品一区二区| 日韩欧美在线二视频| 国产午夜精品久久久久久一区二区三区 | 国产伦一二天堂av在线观看| 国产精品人妻久久久影院| 亚洲av电影不卡..在线观看| 全区人妻精品视频| 免费看美女性在线毛片视频| 可以在线观看毛片的网站| 免费av毛片视频| 国产精品久久久久久久久免| 国产精品综合久久久久久久免费| 精品久久久久久久末码| 国产免费男女视频| 亚洲精品粉嫩美女一区| 精品久久久久久久久久久久久| 国产真实伦视频高清在线观看 | 婷婷精品国产亚洲av| 午夜亚洲福利在线播放| 中文字幕高清在线视频| 国产男人的电影天堂91| 亚洲av电影不卡..在线观看| 亚洲精品日韩av片在线观看| 久久99热6这里只有精品| 国产精品综合久久久久久久免费| 中国美女看黄片| 搞女人的毛片| 综合色av麻豆| 成人美女网站在线观看视频| 少妇丰满av| 久久精品国产99精品国产亚洲性色| 久久热精品热| 给我免费播放毛片高清在线观看| 国产伦在线观看视频一区| 舔av片在线| 午夜视频国产福利| 日本精品一区二区三区蜜桃| 日本三级黄在线观看| 少妇人妻一区二区三区视频| 国产美女午夜福利| 欧美三级亚洲精品| 欧美黑人巨大hd| 黄色一级大片看看| 亚洲av一区综合| 99久久精品一区二区三区| 99在线人妻在线中文字幕| 欧美一级a爱片免费观看看| 黄色女人牲交| 国产久久久一区二区三区| 国产不卡一卡二| 国产视频内射| 亚洲精品亚洲一区二区| 在线免费十八禁| 国产女主播在线喷水免费视频网站 | 波多野结衣巨乳人妻| 精品久久久久久久久av| 天堂网av新在线| 国产精品一区二区三区四区久久| 黄色丝袜av网址大全| 久久精品久久久久久噜噜老黄 | 中出人妻视频一区二区| 免费看a级黄色片| 51国产日韩欧美| 我的老师免费观看完整版| 国模一区二区三区四区视频| 国产高清不卡午夜福利| 国产精品久久久久久av不卡| 国产精品国产高清国产av| 91在线精品国自产拍蜜月| 日本熟妇午夜| 91在线精品国自产拍蜜月| 老司机深夜福利视频在线观看| 亚洲精品国产成人久久av| 人人妻人人看人人澡| 久久久久久大精品| 人人妻人人看人人澡| a级毛片a级免费在线| 亚洲av中文字字幕乱码综合| 国产精品日韩av在线免费观看| 欧美最黄视频在线播放免费| 亚洲精品色激情综合| 精品一区二区三区av网在线观看| 搡女人真爽免费视频火全软件 | 一区二区三区免费毛片| 亚洲av二区三区四区| 日韩欧美精品免费久久| 国产亚洲精品久久久久久毛片| 男人的好看免费观看在线视频| 久久香蕉精品热| 99久久精品国产国产毛片| 麻豆久久精品国产亚洲av| 久久久色成人| 国内精品美女久久久久久| 真人一进一出gif抽搐免费| 国产极品精品免费视频能看的| 男人和女人高潮做爰伦理| 一进一出抽搐gif免费好疼| av女优亚洲男人天堂| 国产乱人视频| 久久99热6这里只有精品| 午夜福利18| 欧美高清性xxxxhd video| 久久99热这里只有精品18| 国产在视频线在精品| 色吧在线观看| 免费观看精品视频网站| 国产精品日韩av在线免费观看| 联通29元200g的流量卡| 亚洲精品粉嫩美女一区| 波多野结衣巨乳人妻| 听说在线观看完整版免费高清| 成人永久免费在线观看视频| 最近中文字幕高清免费大全6 | 在线观看一区二区三区| 99久久成人亚洲精品观看| 亚洲av美国av| 少妇的逼水好多| 日韩欧美免费精品| 日韩精品中文字幕看吧| 午夜福利在线观看吧| 亚洲中文字幕一区二区三区有码在线看| 久久久国产成人免费| 久久久久久九九精品二区国产| xxxwww97欧美| 一级a爱片免费观看的视频| 欧美极品一区二区三区四区| 一区福利在线观看| 午夜久久久久精精品| 国产精品人妻久久久影院| 免费人成在线观看视频色| 精品久久国产蜜桃| 欧美高清成人免费视频www| 校园人妻丝袜中文字幕| 免费无遮挡裸体视频| 高清毛片免费观看视频网站| 在线天堂最新版资源| 最近在线观看免费完整版| 波多野结衣高清无吗| 中出人妻视频一区二区| 国内揄拍国产精品人妻在线| 国产aⅴ精品一区二区三区波| 日本精品一区二区三区蜜桃| 成人一区二区视频在线观看| 舔av片在线| 黄色一级大片看看| 久久久久国内视频| 一a级毛片在线观看| 日本一本二区三区精品| 91久久精品国产一区二区三区| 尾随美女入室| 亚洲国产精品成人综合色|