• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mechanism Study of Rice Straw Pyrolysis by Fourier Transform Infrared Technique*

    2009-05-14 03:04:24FUPeng付鵬HUSong胡松XIANGJun向軍SUNLushi孫路石YANGTao楊濤ZHANGAnchao張安超andZHANGJunying張軍營
    關(guān)鍵詞:楊濤軍營

    FU Peng (付鵬), HU Song (胡松), XIANG Jun(向軍), SUN Lushi (孫路石), YANG Tao (楊濤), ZHANG Anchao (張安超) and ZHANG Junying (張軍營)

    ?

    Mechanism Study of Rice Straw Pyrolysis by Fourier Transform Infrared Technique*

    FU Peng (付鵬), HU Song (胡松)**, XIANG Jun(向軍), SUN Lushi (孫路石), YANG Tao (楊濤), ZHANG Anchao (張安超) and ZHANG Junying (張軍營)

    State Key Lab of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China

    rice straw, pyrolysis, mechanism, Fourier transform infrared

    1 INTRODUCTION

    With the excessive use of fossil fuels and the concerns over environmental protection, the utilization of biomass resources has attracted increasing worldwide interest. Biomass including agricultural residues is one of the main renewable energy resources available especially in an agricultural country such as China. Biomass can be converted to energy and clean fuelsthermochemical and biochemical processes. Pyrolysis, as one of the promising thermochemical conversion routes, plays a vital role in biomass conversion [1]. Pyrolysis is also a vital process in biomass combustion and gasification [2]. However, pyrolysis is an extremely complex process, which generally goes through a series of reactions and can be influenced by many factors [3-5]. Thus, it is necessary to analyze the pyrolysis characteristics of agriculture residues and build comprehensive pyrolysis models that can predict product specification and yields.

    So far, numerous studies were focused on developing kinetics models for predicting behavior of biomass pyrolysis [3, 5-7]. The structure property of biomass was found to influence greatly the pyrolysis characteristics. However, the releasing characteristics of gas products, their relationships with the chemical structure of biomass, and the chemical structure changes during pyrolysis were not discussed in-depth in the previous studies. The lack of data, combining with the large variety and complexity of agricultural residues, leads to difficulties in understanding emission behavior of agricultural residues during the thermal treatment process.

    Rice straw is one of the China’s main agricultural residue resources. Rice straw is not only a potential source of energy but also a value-added by-product. Various technologies for utilization of rice straw through thermochemical conversion requires knowledge of relevant aspects concerning pyrolysis. In the present study, we focused on the gas formation behaviors during pyrolysis of rice straw. The changes in the surface chemistry during pyrolysis were also studied by FTIR analysis. From these measurements, the pyrolysis mechanism of rice straw was examined in details. It is favorable for the development of advanced biomass pyrolysis.

    2 EXPERIMENTAL

    2.1 Experiment materials

    Rice straws (RS) were used in this study as the representatives of agricultural residues. RS were first crushed and sieved, the fraction of particle sizes less than 0.295 mm being chosen for subsequent studies. Elemental analysis and proximate analysis were carried out in a Euro-EA 3000 (HEKAtech, Italy) and TGA-2000 (Navas Instruments, Spain). The respective data are given in Table 1.

    Table 1 Proximate and ultimate analysis of rice straw

    ① Dry and ash-free basis.

    ②Calculated by difference.

    ③As-received basis.

    2.2 Experiment method

    2.2.1

    Thermogravimetric experiments were carried out on a computerized thermobalance (NETZSCH STA 409C, Germany). Thermobalance configuration gives a sensitivity of 0.1 mg. In order to establish an inert atmosphere, a controlled nitrogen flow (fixed at 300 ml·min-1) sweeps the measurement cell that is purged during 30 min. During experiments, the nitrogen flow is fixed at 100 ml·min-1. The initial mass of samples is about 10 mg. The experiments were carried out at a constant heating rate of 5, 10, 20 and 50°C·min-1from the ambient to 900°C, at a steady nitrogen flow of 100 ml·min-1.

    2.2.2

    The experimental apparatus mainly consists of a tubular reactor and a Fourier transform infrared spectrometer. The portable FTIR gas analyzer, GASMET Dx-4000 (Temet Instrument Oy, Finland) FTIR spectrometer, is designed for analysis of multicomponent gases. After the background calibration by N2, test gases were conducted into the sampler and heated up to 180°C during the entire sampling procedure. In the FTIR spectrometer, specific molecular components and structures were specified by the corresponding infrared absorption bands, which allowed the computerized data to be searched against the reference libraries. The concentrations of the gases were further confirmed by classical least squares (CLS) algorithm.

    Pyrolysis experiments were carried out as follows. About a (1.0±0.05) g of virgin biomass particles was loaded into the sample holder and the sample holder assembly was inserted into the cylindrical quartz tube reactor. Then the sample was heated up to 900°C at a constant heating rate of 10°C·min-1, and held for 5 min. Purified nitrogen (≥99.995%) at a flow rate of 2.0 L·min-1was used as the carrier gas to provide an inert atmosphere for pyrolysis. The gases released out were swept immediately to a gas cell, followed by the Gasmet FTIR Dx4000. The transfer line and gas cell were heated to an internal temperature of 180°C in order to avoid cold spots and thus prevent the condensation of the gaseous products. The evolving rates of gaseous products were estimated from the measurements.

    2.2.3

    To investigate the changes in the surface chemistry during pyrolysis, information on the surface chemistry of the samples was provided by FTIR spectroscopy. The raw sample was heated at a constant heating rate of 10°C·min-1to a fixed pyrolysis temperature varied from 200-900°C. The pyrolysis temperatures investigated were 200, 300, 350, 400, 500, 700 and 900°C. The residence time at the maximum temperature was 10 min. This holding time made sure that no significant decomposition occurred during the cooling of the sample. All the IR spectra of rice straw and the chars prepared at different pyrolysis temperatures were measured at 4 cm-1resolution on the VERTEX 70 FTIR spectrometer. The samples were first powdered in an agate mortar and then mixed with KBr at a ratio of 1︰100 to prepare transparent disks. The disks were oven-dried at 110°C for at least 48h to remove water. Eventually, the spectra were plotted with the same scale on the transmittance axis. Abbreviations used in the study of the FTIR results are, stretching;, in-plane bending;, out-of-place bending; as, asymmetric; and s, symmetric.

    3 RESULTS AND DISCUSSION

    3.1 Thermal decomposition characteristics

    The thermogravimetric (TG) and differential thermogravimetric (DTG) curves at a heating rate of 10°C·min-1for rice straw are shown in Fig. 1. The pyrolysis process with the increase of temperature from TG can be divided into three stages, including drying stage(<200°C), main pyrolysis stage (200-400°C), and carbonization stage(>400°C). At the temperature lower than 200°C, the small change of mass is attributed to vaporization of moisture attached on the surface of the sample. The major decomposition occurs between 220 and 380°C. The maximum pyrolysis peak (7.3%·min-1) at 313°C is attributed to the decomposition of cellulose and hemicellulose [8]. Lignin is known to decompose slowly and is responsible for the tailing at high temperatures. As can be seen from Fig. 2, with increasing the heating rate, the maximum pyrolysis rate increases and the corresponding temperature also increases from 304°C at 5°C·min-1to 327°C at 50°C·min-1.

    Figure 1 TG and DTG curves of rice straw pyrolysis

    Figure 2 Comparison of pyrolysis DTG of rice straw at the different heating rates heating rate/°C·min-1:■?5;○?10;△?20; ★?50

    3.2 Kinetic modeling

    A kinetic study of rice straw pyrolysis is necessary to achieve an efficient production of fuel gases, chemicals and energy. The information is also important for the design of large-scale pyrolysis reactors. In this study, the three-pseudocomponent model (TPM) proposed in the Ref. [6] is used for the evaluation of the kinetics. The TPM model assumes that the biomass consists of three pseudocomponents and the pyrolysis rate is then described by

    The variableis the degree of transformation. The subscriptsrepresents the different pseudocomponent of the biomass. Parametersc,andare the coefficient which expresses the contribution of the partial processes to the overall mass loss, the activation energy and the pre-exponential factor andis ideal gas constant.

    This assumption of three pseudocomponents is consistent with the fact that most of biomass consists of hemicellulose, cellulose and lignin. In fact, three pseudocomponents represent a pool of fractions of the main biomass components. Depending on the reaction order, the following kinetic equations are used for each pseudocomponent:

    Hu. [6] pointed out that the three- pseudocomponent model with a reaction order of one could have sufficiently high accuracy to represent biomass pyrolysis for practical utilization. Therefore, the TPM model is used to evaluate the thermal decomposition of rice straw, as shown in Fig. 3. In the view of the previous discussion [6], the decomposition of the raw material is considered as the result of the degradation of its main constituents. Therefore, the three reactions utilized for the simulation of rice straw correspond to the thermal degradation of cellulose, hemicellulose and lignin. The kinetic parameters for rice straw are summarized in Table 2.

    Figure 3 indicates that the pyrolysis of rice straw is quite well described by the three-pseudocomponent model with a reaction order of one. According to the kinetic estimations, the first reaction, which corresponds to hemicellulose, occurs between 250 and 360°C, and the second corresponding to cellulose happens between 200 and 300°C. The third reaction corresponding to the decomposition of lignin appears over a wide temperature range (between 250 and 550°C). Fundamental studies of the decomposition of lignocellulosic materials show the same ranges for the decomposition of hemicellulose, cellulose and lignin, confirming the validity of the results [9-11]. The activation energy of hemicellulose range between the values of 91-114 kJ·mol-1. The corresponding values for the pyrolysis of cellulose are higher and range between 143 and 200 kJ·mol-1. The lowest activation energy values are exhibited by lignin and scattered between 20 and 27 kJ·mol-1. Similar values for activation energies of hemicellulose, cellulose and lignin are also found in the Ref. [12].

    Table 2 Kinetic parameters of rice straw pyrolysis

    ① Pre-exponential factor.

    ② Activation energy.

    ③ Fit represents the calculation quality of the three-pseudocomponent model.

    3.3 FTIR analysis of gas products

    Figure 4 shows the typical IR spectra of gas products in the three different pyrolysis stages for rice straw. Several representative temperatures in each pyrolysis stage are chosen to study the formation mechanism of main gas products. In the first stage, the mass loss is mainly caused by the release of water [Fig. 4 (a)], with the characteristic bands of H2O at 3500-4000 and 1275-1875cm-1. The water attached onthe surface of the sample is released out by evaporation.

    Figure 4 FTIR spectra of gas products at (a) 125°C, (b) 300°C and (c) 600°C during the pyrolysis of rice straw

    The main constituents of biomass are lignin, hemicellulose and cellulose [4, 17]. Lignin is a very complex aromatic structure and hemicellulose is a polymer of 5- and 6-carbon sugars, while cellulose is a polymer of glucose [4]. Those structural differences have an influence on the thermal decomposition behaviors of the biomass. Yang. [1] pointed out that the releasing of CO2was mostly contributed by hemicellulose at low temperature (<500°C) and by lignin at high temperature (>500°C), CO releasing was mostly caused by the pyrolysis of hemicellulose in the whole temperature range and that of lignin at high temperatures (>600°C), and hemicellulose, cellulose and lignin all contributed to the releasing of CH4at low, middle and high temperatures.

    Figure 5 The profiles of (a) H2O, (b) CO2, (c) CO and (d) CH4evolving from rice straw pyrolysis

    3.5 FTIR analysis of rice straw

    Figure 6 FTIR spectra of rice straw

    Table 3 The main atomic groups and structures of rice straw

    3.6 Changes in the surface chemistry

    Figure 7 The changes in the FTIR spectra through the pyrolysis of rice straw

    4 CONCLUSIONS

    From the above results, the following conclusions can be drawn:

    (1) The maximum pyrolysis rate increases with the heating rate increasing and the corresponding temperature also increases. The three-pseudocomponent model could describe the pyrolysis behavior of rice straw accurately.

    (2) The main gas products of rice straw pyrolysis are H2O, CO2, CO, CH4, formaldehyde, formic acid, methanol, phenols,. The releasing of H2O, CO2, CO and CH4mainly focuses at 220-400°C. The H2O formation process is separated into two stages corresponding to the evaporation of free water and the formation of primary volatiles. The release of CO2first increases with increasing temperature and gets the maximum at 309°C. The releasing behavior of CO is similar to H2O and CO2between 200 and 400°C. The production of CH4happens at higher temperatures of 275-400°C with the maximum at 309°C.

    1 Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C., “Characteristics of hemicellulose, cellulose and lignin pyrolysis”,, 86, 1781-1788 (2007).

    2 Ren, Q., Zhao, C., Wu, X., Liang, C., Chen, X., Shen, J., Tang, G., Wang, Z., “Effect of mineral matter on the formation of NOprecursors during biomass pyrolysis”,..., doi: 10.1016/j.jaap.2008.08.006 (2008).

    3 Manya, J.J., Velo, E., Puigjaner, L., “Kinetics of biomass pyrolysis: A reformulated three-parallel-reactions model”,...., 42, 434-441 (2003).

    4 Becidan, M., Skreiberg, ?., Hustad, J., “Products distribution and gas release in pyrolysis of thermally thick biomass residues samples”,..., 78, 207-213 (2007).

    5 Yan, R., Yang, H., Chin, T., Liang, D.T., Chen, H., Zheng, C., “Influence of temperature on the distribution of gaseous products from pyrolyzing palm oil wastes”,, 142, 24-32 (2005).

    6 Hu, S., Jess, A., Xu, M., “Kinetic study of Chinese biomass slow pyrolysis: Comparison of different kinetic models”,, 86, 2778-2788 (2007).

    7 Babu, B.V., Chaurasia, A.S., “Pyrolysis of biomass: Improved models for simultaneous kinetics and transport of heat, mass and momentum”,, 45, 1297-1327 (2004).

    8 Park, Y.H., Kim, J., Kim, S.S., Park, Y.K., “Pyrolysis characteristics and kinetics of oak trees using thermogravimetric analyzer and micro-tubing reactor”,, 100, 400-405 (2009).

    9 Muller-Hagedorn, M., Bockhorn, H., Krebs, L., Muller, U., “A comparative kinetic study on the pyrolysis of three different wood species’’,..., 68/69, 231-249 (2003).

    10 Fisher, T., Hajaligol, M., Waymack, B., Kellogg, D., “Pyrolysis behavior and kinetics of biomass derived materials”,..., 62, 331-349 (2002).

    11 Reed, T. B., Gaur, S., “Atlas of thermal data of biomass and other fuels-A report on the forthcoming book”,, 7, 143-145 (1994).

    12 Grammelis, P., Basinas, P., Malliopoulou, A., Sakellaropoulos, G., “Pyrolysis kinetics and combustion characteristics of waste recovered fuels”,, 88, 195-205 (2009).

    13 Zhu, H.M., Yan, J.H., Jiang, X.G., Lai, Y.E., Cen, K.F., “Study on pyrolysis of typical medical waste materials by using TG-FTIR analysis”,, 153, 670-676 (2008).

    14 Liu, Q., Wang, S., Zheng, Y., Luo, Z., Cen, K., “Mechanism of wood lignin pyrolysis by using TG-FTIR analysis”,..., 82, 170-177 (2008).

    15 Biagini, E., Barontini, F., Tognotti, L., “Devolatilization of biomass fuels and biomass components studied by TG/FTIR technique”,..., 45, 4486-4493 (2006).

    16 Fu, P., Hu, S., Sun, L., Xiang, J., Chen, Q., Yang, T., Zhang, J., “Release characteristics and formation mechanism of gas products during rice straw and maize stalk pyrolysis”,, 29, 113-118 (2009).

    17 Worasuwannarak, N., Sonobe, T., Tanthapanichakoon, W., “Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique”,..., 78, 265-271 (2007).

    18 Painter, P.C., Sobkowiak, M., Youtcheff, J., “FT-IR study of hydrogen bonding in coal”,, 66, 973-978 (1987).

    19 Gómez-Serrano, V., Piriz-Almeida, F., Durán-Valle, C.J., Pastor-Villegas, J., “Formation of oxygen structures by air activation. A study by FT-IR spectroscopy”,, 37, 1517-1528 (1999).

    20 Gómez-Serrano, V., Pastor-Villegas, J., Perez-Florindo, A., Duran-Valle, C., Valenzuela-Calahorro, C., “FT-IR study of rockrose and of char and activated carbon”,..., 36, 71-80 (1996).

    21 Pastor-Villegas, J., Meneses Rodríguez, J.M., Pastor-Valle, J.F., García, M.G., “Changes in commercial wood charcoals by thermal treatments”,..., 80, 507-514 (2007).

    22 Pastor-Villegas, J., Duran-Valle, C.J., Valenzuela-Calahorro, C., Gómez-Serrano, V., “Organic chemical structure and structural shrinkage of chars prepared from rockrose”,, 36, 1251-1256 (1998).

    23 Tang, M.M., Bacon, R., “Carbonization of cellulose fibers (1) Low temperature pyrolysis”,, 2, 211-214 (1964).

    24 Shafizadeh, F., Sekiguchi, Y., “Development of aromaticity in cellulosic chars”,, 21, 511-516 (1983).

    2008-12-03,

    2009-04-07.

    the Special Funds for Major State Basic Research Projects of China (2004CB217704), and the National Natural Science Foundation of China (50721005).

    ** To whom correspondence should be addressed. E-mail: hssh30@163.com

    猜你喜歡
    楊濤軍營
    傳承好紅巖精神 走好新時(shí)代長征路
    九龍坡:一江繞半島 藝術(shù)煥新生
    Quantum reflection of a Bose–Einstein condensate with a dark soliton from a step potential?
    THE EXISTENCE OF A NONTRIVIAL WEAK SOLUTION TO A DOUBLE CRITICAL PROBLEM INVOLVING A FRACTOL LOL
    軍營里的奧運(yùn)會(huì)
    Changes in fi sh diversity and community structure in the central and southern Yellow Sea from 2003 to 2015*
    軍營游
    軍營暢想曲
    心聲歌刊(2017年4期)2017-09-20 11:43:50
    在軍營下棋的歲月(一)
    棋藝(2016年6期)2016-11-14 05:42:17
    幸福夢
    免费在线观看影片大全网站| 久久久久久久精品吃奶| 在线av久久热| 男男h啪啪无遮挡| 亚洲精品一卡2卡三卡4卡5卡| 亚洲欧美日韩无卡精品| 91成年电影在线观看| 久久久久国内视频| 天堂影院成人在线观看| 国产亚洲精品久久久久久毛片| 一级a爱片免费观看的视频| 国产三级黄色录像| 免费在线观看黄色视频的| 中文字幕最新亚洲高清| 亚洲人成网站在线播放欧美日韩| 他把我摸到了高潮在线观看| 亚洲美女黄片视频| 国产精品爽爽va在线观看网站 | 老司机在亚洲福利影院| 亚洲欧美日韩高清在线视频| 亚洲 欧美一区二区三区| 精品卡一卡二卡四卡免费| 欧美 亚洲 国产 日韩一| 亚洲午夜理论影院| 精品高清国产在线一区| 久久久久久久久中文| 免费在线观看视频国产中文字幕亚洲| 99国产精品一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲色图av天堂| 亚洲欧美激情在线| 丝袜在线中文字幕| 国产精品影院久久| 男女下面进入的视频免费午夜 | 天天躁夜夜躁狠狠躁躁| 99re在线观看精品视频| 国产精品一区二区三区四区久久 | 亚洲狠狠婷婷综合久久图片| 非洲黑人性xxxx精品又粗又长| 国产在线精品亚洲第一网站| 妹子高潮喷水视频| 国产一区二区在线av高清观看| 国产精华一区二区三区| 国产99久久九九免费精品| 精品国产超薄肉色丝袜足j| 精品国产美女av久久久久小说| 69av精品久久久久久| 精品久久蜜臀av无| 亚洲欧美精品综合一区二区三区| 精品一品国产午夜福利视频| 18禁裸乳无遮挡免费网站照片 | 国产精品野战在线观看| 男女午夜视频在线观看| 亚洲av第一区精品v没综合| 桃色一区二区三区在线观看| 亚洲最大成人中文| 日韩欧美一区二区三区在线观看| 91国产中文字幕| 国产精品一区二区在线不卡| 国产成人欧美| 亚洲av电影在线进入| 欧美日韩福利视频一区二区| 啦啦啦观看免费观看视频高清 | 女警被强在线播放| 一区二区三区国产精品乱码| 一二三四在线观看免费中文在| 巨乳人妻的诱惑在线观看| 18禁美女被吸乳视频| 国产成人欧美在线观看| 欧美日韩精品网址| 99热只有精品国产| 人人妻人人澡人人看| 一区二区三区国产精品乱码| 国产xxxxx性猛交| 国产成人精品无人区| 美女扒开内裤让男人捅视频| 一本综合久久免费| 国产精品亚洲一级av第二区| 97人妻天天添夜夜摸| 动漫黄色视频在线观看| 亚洲片人在线观看| 一个人免费在线观看的高清视频| 亚洲成av人片免费观看| 国产区一区二久久| 国产蜜桃级精品一区二区三区| 久久中文看片网| 精品久久久久久久毛片微露脸| 精品免费久久久久久久清纯| 久久人妻福利社区极品人妻图片| 丝袜人妻中文字幕| 亚洲人成伊人成综合网2020| 看片在线看免费视频| 日韩精品中文字幕看吧| 国产精品综合久久久久久久免费 | 久久中文字幕人妻熟女| 男人的好看免费观看在线视频 | 亚洲av电影在线进入| 日韩高清综合在线| 一级毛片精品| 黑人巨大精品欧美一区二区蜜桃| 久久精品国产亚洲av高清一级| 成人三级做爰电影| 亚洲欧美激情在线| 午夜福利免费观看在线| 亚洲avbb在线观看| 亚洲中文字幕一区二区三区有码在线看 | 久久人妻福利社区极品人妻图片| 欧美中文综合在线视频| 色哟哟哟哟哟哟| 国产亚洲欧美在线一区二区| 91麻豆av在线| 村上凉子中文字幕在线| 国产一级毛片七仙女欲春2 | 母亲3免费完整高清在线观看| 久久久久久亚洲精品国产蜜桃av| 可以在线观看毛片的网站| 亚洲一区二区三区色噜噜| 国产精品,欧美在线| 大型av网站在线播放| 非洲黑人性xxxx精品又粗又长| 人妻丰满熟妇av一区二区三区| 变态另类成人亚洲欧美熟女 | 午夜久久久久精精品| 一级a爱视频在线免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品国产清高在天天线| 亚洲欧美一区二区三区黑人| 99久久综合精品五月天人人| 9191精品国产免费久久| 一区二区三区高清视频在线| 亚洲,欧美精品.| 久久人妻熟女aⅴ| 国产熟女午夜一区二区三区| 亚洲第一欧美日韩一区二区三区| 精品国内亚洲2022精品成人| 国产精品国产高清国产av| 亚洲自拍偷在线| 亚洲av成人av| 国产精品 国内视频| av片东京热男人的天堂| 亚洲天堂国产精品一区在线| 午夜福利影视在线免费观看| 午夜福利高清视频| 他把我摸到了高潮在线观看| 日本a在线网址| 国内精品久久久久久久电影| 可以在线观看毛片的网站| 日韩中文字幕欧美一区二区| 亚洲第一青青草原| 久久亚洲真实| 狂野欧美激情性xxxx| 亚洲中文日韩欧美视频| 婷婷六月久久综合丁香| 国产欧美日韩综合在线一区二区| 中文字幕高清在线视频| 亚洲午夜理论影院| 亚洲人成电影免费在线| 欧美日韩福利视频一区二区| 精品久久蜜臀av无| 99精品在免费线老司机午夜| 国产视频一区二区在线看| 久久久久亚洲av毛片大全| 久久婷婷人人爽人人干人人爱 | 国产区一区二久久| 国产精品野战在线观看| 国产亚洲精品久久久久久毛片| 免费少妇av软件| 90打野战视频偷拍视频| 又大又爽又粗| 亚洲精品国产一区二区精华液| 9191精品国产免费久久| 每晚都被弄得嗷嗷叫到高潮| 久久婷婷人人爽人人干人人爱 | 国产精品一区二区免费欧美| 日日爽夜夜爽网站| 一a级毛片在线观看| 如日韩欧美国产精品一区二区三区| 丝袜美足系列| 日本 av在线| 69精品国产乱码久久久| 欧美精品亚洲一区二区| 黄色视频,在线免费观看| 国产激情久久老熟女| 每晚都被弄得嗷嗷叫到高潮| 最近最新免费中文字幕在线| 韩国av一区二区三区四区| 国产av一区二区精品久久| 别揉我奶头~嗯~啊~动态视频| 国产成+人综合+亚洲专区| 他把我摸到了高潮在线观看| 亚洲第一欧美日韩一区二区三区| 999久久久精品免费观看国产| 俄罗斯特黄特色一大片| 啦啦啦韩国在线观看视频| 欧美av亚洲av综合av国产av| 成人18禁在线播放| 久久久久亚洲av毛片大全| 电影成人av| 国产1区2区3区精品| 在线观看一区二区三区| 97超级碰碰碰精品色视频在线观看| 国产精品98久久久久久宅男小说| 欧美激情高清一区二区三区| 窝窝影院91人妻| 啦啦啦免费观看视频1| 亚洲色图 男人天堂 中文字幕| 久久 成人 亚洲| 999精品在线视频| 日本精品一区二区三区蜜桃| 日韩大码丰满熟妇| 丰满人妻熟妇乱又伦精品不卡| 激情在线观看视频在线高清| 久久国产精品男人的天堂亚洲| 日本免费a在线| 欧美中文日本在线观看视频| 久久国产亚洲av麻豆专区| 大型黄色视频在线免费观看| 19禁男女啪啪无遮挡网站| 可以在线观看的亚洲视频| 亚洲 欧美一区二区三区| 女人被躁到高潮嗷嗷叫费观| 亚洲熟妇中文字幕五十中出| 操出白浆在线播放| av电影中文网址| 国产精品久久久av美女十八| 日韩高清综合在线| 欧美不卡视频在线免费观看 | 久久天堂一区二区三区四区| 午夜福利成人在线免费观看| 乱人伦中国视频| 一本久久中文字幕| 老司机在亚洲福利影院| 欧美日韩乱码在线| 亚洲av片天天在线观看| 长腿黑丝高跟| 国产高清videossex| 18禁观看日本| 狠狠狠狠99中文字幕| 色尼玛亚洲综合影院| 美女扒开内裤让男人捅视频| 亚洲中文av在线| 男人操女人黄网站| 国产精品野战在线观看| 搡老岳熟女国产| 久久精品国产亚洲av高清一级| 国产av一区在线观看免费| 欧美精品啪啪一区二区三区| 中文字幕人成人乱码亚洲影| 嫩草影院精品99| 精品熟女少妇八av免费久了| 日日爽夜夜爽网站| 波多野结衣高清无吗| 久久精品人人爽人人爽视色| 日本vs欧美在线观看视频| 中文字幕高清在线视频| 国产亚洲精品第一综合不卡| 香蕉丝袜av| 自拍欧美九色日韩亚洲蝌蚪91| 9热在线视频观看99| av视频免费观看在线观看| 在线观看午夜福利视频| 黄片播放在线免费| ponron亚洲| 18禁美女被吸乳视频| 国产人伦9x9x在线观看| 99久久久亚洲精品蜜臀av| 少妇裸体淫交视频免费看高清 | 亚洲av第一区精品v没综合| 看片在线看免费视频| 久久中文看片网| 成人亚洲精品av一区二区| 韩国精品一区二区三区| 欧美乱妇无乱码| 欧美激情久久久久久爽电影 | 欧美不卡视频在线免费观看 | 女生性感内裤真人,穿戴方法视频| 高清在线国产一区| 久热这里只有精品99| 97超级碰碰碰精品色视频在线观看| 国产成人欧美| 精品欧美国产一区二区三| 亚洲色图av天堂| 极品教师在线免费播放| 精品高清国产在线一区| www.999成人在线观看| 午夜久久久在线观看| 日本五十路高清| 久久香蕉激情| 少妇粗大呻吟视频| 午夜精品在线福利| 亚洲欧美激情在线| 久久久久久久久久久久大奶| 手机成人av网站| 欧美日韩亚洲综合一区二区三区_| 国产激情欧美一区二区| 亚洲精品美女久久久久99蜜臀| 在线播放国产精品三级| 国产主播在线观看一区二区| 校园春色视频在线观看| 搡老岳熟女国产| 日本撒尿小便嘘嘘汇集6| 亚洲成人久久性| 99riav亚洲国产免费| 亚洲av五月六月丁香网| av网站免费在线观看视频| 欧美 亚洲 国产 日韩一| 国产一区二区三区在线臀色熟女| 波多野结衣巨乳人妻| 中文字幕人妻丝袜一区二区| 亚洲情色 制服丝袜| 国产精品久久久人人做人人爽| 91麻豆av在线| 精品国产一区二区三区四区第35| 色综合欧美亚洲国产小说| 91成人精品电影| 国产精品美女特级片免费视频播放器 | 国产一区二区三区在线臀色熟女| 久久久久久久久中文| 日韩三级视频一区二区三区| 久久青草综合色| 日韩欧美三级三区| 久久热在线av| 日本精品一区二区三区蜜桃| 夜夜躁狠狠躁天天躁| 国产91精品成人一区二区三区| 免费久久久久久久精品成人欧美视频| 精品国产一区二区三区四区第35| 国产亚洲欧美精品永久| 男女下面进入的视频免费午夜 | 国产精品一区二区免费欧美| 人人妻人人爽人人添夜夜欢视频| 国产成人av激情在线播放| 黄片小视频在线播放| 日韩欧美在线二视频| 啦啦啦免费观看视频1| 欧美丝袜亚洲另类 | 亚洲avbb在线观看| 久久精品aⅴ一区二区三区四区| 欧美一级毛片孕妇| 99re在线观看精品视频| 国产激情久久老熟女| 中文字幕人成人乱码亚洲影| 亚洲avbb在线观看| av视频免费观看在线观看| 亚洲男人的天堂狠狠| 亚洲 欧美 日韩 在线 免费| 18美女黄网站色大片免费观看| 欧美不卡视频在线免费观看 | 国产av精品麻豆| 99国产精品99久久久久| 亚洲av日韩精品久久久久久密| 中文字幕av电影在线播放| 国产一区二区三区综合在线观看| 黄色毛片三级朝国网站| 亚洲男人天堂网一区| 久久人妻av系列| 国产一卡二卡三卡精品| 国产成人av激情在线播放| 国产成年人精品一区二区| 国产aⅴ精品一区二区三区波| 一进一出好大好爽视频| 国产精品一区二区免费欧美| 天堂√8在线中文| 亚洲在线自拍视频| 99在线人妻在线中文字幕| 啦啦啦韩国在线观看视频| 亚洲精品美女久久av网站| 黄色a级毛片大全视频| 天堂动漫精品| 精品久久久久久久人妻蜜臀av | 久久国产精品人妻蜜桃| 国产91精品成人一区二区三区| 亚洲天堂国产精品一区在线| 亚洲久久久国产精品| 精品久久久久久久久久免费视频| 亚洲精品粉嫩美女一区| 丝袜美足系列| 日韩欧美免费精品| 欧美乱色亚洲激情| 欧美在线一区亚洲| 亚洲欧美日韩另类电影网站| 黄片大片在线免费观看| 在线观看www视频免费| 两性夫妻黄色片| 国产午夜福利久久久久久| 精品欧美国产一区二区三| 黄色 视频免费看| 国产熟女午夜一区二区三区| 日韩欧美国产一区二区入口| 久久久久久亚洲精品国产蜜桃av| 日韩 欧美 亚洲 中文字幕| 亚洲国产中文字幕在线视频| 国产精品久久久久久精品电影 | 亚洲中文字幕一区二区三区有码在线看 | 一边摸一边抽搐一进一出视频| 日韩av在线大香蕉| 又紧又爽又黄一区二区| 波多野结衣一区麻豆| 国产精品综合久久久久久久免费 | 亚洲精品在线美女| 国产极品粉嫩免费观看在线| 亚洲精品一区av在线观看| 亚洲免费av在线视频| 欧美av亚洲av综合av国产av| 国产成人啪精品午夜网站| 精品人妻在线不人妻| 久久午夜综合久久蜜桃| АⅤ资源中文在线天堂| 男男h啪啪无遮挡| 久久中文字幕人妻熟女| 美女国产高潮福利片在线看| 十八禁人妻一区二区| 色哟哟哟哟哟哟| 国产国语露脸激情在线看| 女人高潮潮喷娇喘18禁视频| 国产成人欧美在线观看| 午夜福利一区二区在线看| 国产精品 欧美亚洲| 欧美激情 高清一区二区三区| 怎么达到女性高潮| 午夜福利免费观看在线| 亚洲最大成人中文| 99riav亚洲国产免费| 别揉我奶头~嗯~啊~动态视频| 动漫黄色视频在线观看| 人人妻人人澡人人看| 国产三级在线视频| 成人亚洲精品av一区二区| 色综合亚洲欧美另类图片| 久久人人爽av亚洲精品天堂| АⅤ资源中文在线天堂| 在线观看舔阴道视频| 最近最新中文字幕大全免费视频| 精品不卡国产一区二区三区| 后天国语完整版免费观看| 老熟妇仑乱视频hdxx| 久久这里只有精品19| 亚洲国产精品999在线| 国产成人啪精品午夜网站| 欧美激情 高清一区二区三区| 亚洲 欧美一区二区三区| 免费高清在线观看日韩| 亚洲av五月六月丁香网| 在线观看免费日韩欧美大片| 此物有八面人人有两片| 欧美成人免费av一区二区三区| 国产精品久久久人人做人人爽| 91老司机精品| 淫秽高清视频在线观看| 岛国在线观看网站| 国产色视频综合| 色精品久久人妻99蜜桃| 亚洲av成人av| 丰满人妻熟妇乱又伦精品不卡| 免费看a级黄色片| 黄色片一级片一级黄色片| 999久久久精品免费观看国产| 久久精品成人免费网站| 激情在线观看视频在线高清| 男女之事视频高清在线观看| 国产熟女xx| 亚洲中文av在线| 亚洲色图综合在线观看| 亚洲久久久国产精品| 国产精品一区二区在线不卡| 国产蜜桃级精品一区二区三区| 老司机福利观看| 美女大奶头视频| 亚洲成a人片在线一区二区| 日韩精品青青久久久久久| 免费在线观看黄色视频的| 纯流量卡能插随身wifi吗| 两性夫妻黄色片| 夜夜看夜夜爽夜夜摸| 久久亚洲真实| 欧美激情久久久久久爽电影 | 99香蕉大伊视频| 两性午夜刺激爽爽歪歪视频在线观看 | 久久国产精品人妻蜜桃| 黄片小视频在线播放| 亚洲天堂国产精品一区在线| 日韩精品免费视频一区二区三区| 夜夜夜夜夜久久久久| 嫩草影视91久久| 69精品国产乱码久久久| 午夜激情av网站| 69av精品久久久久久| 国产免费男女视频| 久久人妻福利社区极品人妻图片| 老司机午夜福利在线观看视频| www国产在线视频色| 久久人人97超碰香蕉20202| 给我免费播放毛片高清在线观看| 黄色成人免费大全| 亚洲国产欧美一区二区综合| 欧美精品啪啪一区二区三区| 男女之事视频高清在线观看| 午夜福利影视在线免费观看| 极品教师在线免费播放| 欧美乱码精品一区二区三区| 国产精品精品国产色婷婷| 精品国产国语对白av| 亚洲狠狠婷婷综合久久图片| 亚洲av成人一区二区三| 女性生殖器流出的白浆| 日日夜夜操网爽| 国产一区二区激情短视频| 亚洲国产日韩欧美精品在线观看 | 丝袜在线中文字幕| 久久久久久久久久久久大奶| av免费在线观看网站| 亚洲七黄色美女视频| 不卡av一区二区三区| 欧美成人性av电影在线观看| 精品国产国语对白av| 国内毛片毛片毛片毛片毛片| 国产精品亚洲美女久久久| 色精品久久人妻99蜜桃| 黑人巨大精品欧美一区二区蜜桃| 欧美国产日韩亚洲一区| 美女高潮到喷水免费观看| 亚洲午夜精品一区,二区,三区| 国产熟女午夜一区二区三区| 免费少妇av软件| 高潮久久久久久久久久久不卡| 免费女性裸体啪啪无遮挡网站| 激情视频va一区二区三区| 最新在线观看一区二区三区| 精品乱码久久久久久99久播| 无限看片的www在线观看| 久久性视频一级片| 波多野结衣av一区二区av| 久久人人爽av亚洲精品天堂| 国产亚洲精品久久久久5区| 欧美激情久久久久久爽电影 | 国产熟女xx| 免费在线观看日本一区| 国产精品九九99| 一级毛片精品| 视频区欧美日本亚洲| 一本综合久久免费| 亚洲黑人精品在线| 在线观看免费视频日本深夜| 久久久久国内视频| 999久久久精品免费观看国产| 国产成人一区二区三区免费视频网站| 村上凉子中文字幕在线| 日韩欧美在线二视频| 亚洲av成人av| 国产精品亚洲美女久久久| 国内毛片毛片毛片毛片毛片| 97人妻天天添夜夜摸| 青草久久国产| 91字幕亚洲| 婷婷丁香在线五月| 男女下面进入的视频免费午夜 | 18禁美女被吸乳视频| 侵犯人妻中文字幕一二三四区| 91国产中文字幕| www.自偷自拍.com| tocl精华| 此物有八面人人有两片| 老司机午夜福利在线观看视频| 午夜福利一区二区在线看| 我的亚洲天堂| 亚洲狠狠婷婷综合久久图片| 757午夜福利合集在线观看| 99riav亚洲国产免费| 国产精品综合久久久久久久免费 | 少妇熟女aⅴ在线视频| 1024视频免费在线观看| 免费在线观看影片大全网站| 99久久精品国产亚洲精品| 一a级毛片在线观看| 久久影院123| 91精品三级在线观看| netflix在线观看网站| 亚洲av熟女| 日本黄色视频三级网站网址| 国产成人av教育| 久久国产精品男人的天堂亚洲| 中文字幕最新亚洲高清| 女生性感内裤真人,穿戴方法视频| 亚洲专区字幕在线| 麻豆av在线久日| 纯流量卡能插随身wifi吗| 久久精品国产99精品国产亚洲性色 | 丰满的人妻完整版| 啦啦啦观看免费观看视频高清 | 亚洲专区字幕在线| 国产精品久久视频播放| 午夜视频精品福利| 女人精品久久久久毛片| 久久婷婷人人爽人人干人人爱 | 亚洲熟妇熟女久久| 两性午夜刺激爽爽歪歪视频在线观看 | 在线观看免费视频日本深夜| 可以在线观看的亚洲视频| 国产成人系列免费观看| 国产精品一区二区在线不卡| 91成年电影在线观看| 国语自产精品视频在线第100页| 一区在线观看完整版| 91成人精品电影| 国产高清videossex| 日韩三级视频一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 亚洲av熟女| 亚洲五月色婷婷综合| 18禁黄网站禁片午夜丰满| 国产精品香港三级国产av潘金莲| 久久国产精品人妻蜜桃| 久久久久久国产a免费观看| 国产亚洲精品av在线| 啪啪无遮挡十八禁网站|