• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling and Control of Nonlinear Discrete-time Systems Based on Compound Neural Networks*

    2009-05-14 03:04:30ZHANGYan張燕LIANGXiuxia梁秀霞YANGPeng楊鵬CHENZengqiang陳增強(qiáng)andYUANZhuzhi袁著祉
    關(guān)鍵詞:張燕楊鵬

    ZHANG Yan (張燕), LIANG Xiuxia (梁秀霞), YANG Peng (楊鵬), CHEN Zengqiang (陳增強(qiáng)) and YUAN Zhuzhi (袁著祉)

    ?

    Modeling and Control of Nonlinear Discrete-time Systems Based on Compound Neural Networks*

    ZHANG Yan (張燕)1,**, LIANG Xiuxia (梁秀霞)1, YANG Peng (楊鵬)1, CHEN Zengqiang (陳增強(qiáng))2and YUAN Zhuzhi (袁著祉)2

    1Department of Automation, Hebei University of Technology, Tianjin 300130, China2Department of Automation, Nankai University, Tianjin 300071, China

    An adaptive inverse controller for nonliear discrete-time system is proposed in this paper. A compound neural network is constructed to identify the nonlinear system, which includes a linear part to approximate the nonlinear system and a recurrent neural network to minimize the difference between the linear model and the real nonlinear system. Because the current control input is not included in the input vector of recurrent neural network (RNN), the inverse control law can be calculated directly. This scheme can be used in real-time nonlinear single-input single-output (SISO) and multi-input multi-output (MIMO) system control with less computation work. Simulation studies have shown that this scheme is simple and affects good control accuracy and robustness.

    adaptive inverse control, compound neural network, process control, reaction engineering, multi-input multi-output nonlinear system

    1 INTRODUCTION

    The other approach is by using a linear state observer and an error compensator to approximate the error between the linear model and the process based on NN. The nonlinear dynamics are inverted directly [14]. The extension of output feedback employing a high-gain observer is given [15]. An error observer approach with-modification and a filter with nonlinearly parameterized NN and modification are introduced to decrease oscillation. A linear dynamic compensator is designed to stabilize the linearized system [16]. A temperature controller with Takagi- Sugeno-Kang-type recurrent fuzzy network (TRFN) designed by direct inverse modeling approach is proposed [17]. The recurrent property of TRFN enables it to be directly applied to a dynamic plant control without a priori knowledge of the plant order. An application of neural networks based additive nonlinear autoregressive exogenous (NNANARX) structure for modeling of nonlinear MIMO systems is presented [18]. Then, the problem of the inverse function calculation in the control algorithm is solved and applied to control nonlinear MIMO systems. Most of these approaches are limited to system in strict-feedback form, and accuracy of the plant model is critical when an inverse is used.

    Motivated by this, a novel NN based adaptive inverse control approach is proposed for both SISO and MIMO nonlinear nonaffine discrete systems in this paper. A compound neural network (CNN) is constructed to model the system and an adaptive inverse control strategy is presented. Simulation results can demonstrate the effectiveness and advantages.

    2 SYSTEM DESCRIPTION AND PRELIMINARIES

    2.1 System representation and identification

    The following SISO nonaffine nonlinear discrete- time system is considered [16]:

    For convenience of analysis, the future output is determined by a number of past observations of the inputs and outputs. An equivalent input-output representation can be written as the nonlinear auto regressive moving average with exogenous inputs (NARMAX) system:

    Classically this controlled system can be realized by the NN-based model at moment:

    2.2 Compound neural network

    To identify the system shown in Eq. (2), many kinds of NNs can be used. Here, in order to get an inverse controller directly and avoid using another control neural network, a compound neural network (CNN) is proposed. Its structure is shown in Fig. 1. It is composed of two parts: a two-layer linear feedforward neural network (LFNN) and a recurrent neural network (RNN). The output of the identifier can be expressed as:

    Figure 1 The structure of compound neural network

    The identifier output is rewritten as follows:

    In the approximation process, suppose() is the weight matrix of the whole CNN. It is trained by minimizing the following index function.

    2.3 Error correction

    3 Adaptive inverse controller

    Unlike the general NARMAX model, this compound structure can be easily controlled by the dynamic feedback theory. If the model is given by Eq. (2), the control signal is calculated by the following equation:

    From Eq. (11), the desired output feedback is given by

    Figure 2 Control system architecture

    Step 1 Initialize the structure of the compound neural network. Select the relative coefficient: the learning rate, the initial weight vector of CNN, and the error proportional coefficient.

    Step 3 Put the trained CNN into the closed loop control, and then, the control signal at timecan be calculate by Eq. (13).

    Step 4 Update the CNN weight vector by Eq. (9).

    4 MIMO system inverse controller

    The controlled nonlinear MIMO system withinputs andoutputs is considered. The controlled system can be represented by the NARMAX model as follows:

    Similarly as SISO nonlinear system, a compound neural network can be used to approximate the MIMO NARMAX model. The input vector of the LFNN and RNN are defined as:

    The output of CNN can be written as follows:

    In the approximation process,() is supposed to be the weight matrix of the whole CNN. The gradient decent method is used to train().

    In the control process, as SISO system, the error at timeis introduced to predict the output of the system. The predictive output can be written as:

    Because the current control signal() is one part of the input vector of LFNN in the CNN, the control law for the MIMO case can be determined straightforwardly under the inverse control thought:

    5 SIMULATION RESULTS

    Example 1 A liquid level system is described by the following equations [16]:

    The NARMAX model of the process should be written as:

    Figure 3 CNN training error

    From Fig. 3, it can be seen that the CNN has the accurate identification capability. The nonlinear model of the plant was placed into the inverse control loop. The initial conditions of the plant are set to random variables. Here, the parameters of the CNN used in the inverse control are the same as in the CNN training. The error proportional coefficientis set as 0.7. Fig. 4 presents the control results and the control signal in the process obtained by the proposed inverse control method for tracking square signal. It shows a good tracking result.

    Example 2 Isothermal reactor [20]

    The following reaction occurs in an ideal stirred tank reactor:

    where A is in excess. The reaction rate equation is given by the following equation:

    The cross-sectional area of the tank is 1.0 m2and the sampling time is 1.0 min. After simplification, the model becomes:

    In the process of the model for the MIMO nonlinear system, 12 nodes are chosen in the hidden layer of RNN for the CNN identifier. First, the following input signals are used to approximate the MIMO nonlinear discrete systems:

    In this case, the learning rateis selected as 0.2. From Fig. 5, it can be seen that the CNN model can describethe MIMO nonlinear system with high accuracy.

    Figure 5 Identification results of Example 2

    Second, the trained CNN is put into the closed-loop inverse control. The control results are illustrated in Fig. 6. It shows that the system can track the reference signals with acceptable approximation errors. The proposed CNN inverse control method shows good trackingperformance for the MIMO nonlinear chemical system.

    6 CONCLUSIONS

    An adaptive inverse control scheme has been proposed in this paper. To use inverse theory directly, a new compound neural network is proposed. The linear feed-forward neural network is used to approximate the nonlinear controlled process. The recurrent neural network is used to minimize the error between the LFNN and the real nonlinear process. Based on this kind of neural network to approximate the controlled process, an adaptive inverse control scheme can be directly implemented. During this process, an error correction method is proposed to reduce the predictive error. The less computation work is needed since no further training task is required for the neural inverse controller in the I/O domain. This scheme can be used to control both nonlinear dynamic discrete-time SISO and MIMO systems in real time. Simulation results exploit that the proposed scheme is effective and practical.

    Figure 6 Tracking performance of Example 2

    NOMENCLATURE

    the error proportional coefficient

    Bconcentration of B in the reactor example

    error between the system output and the identifier

    a smooth nonlinear function vector

    a smooth nonlinear function

    Ea smooth linear function vector

    Na smooth nonlinear function vector

    La smooth linear function

    Na smooth nonlinear function

    a sigmodal activation function

    Lthe input vector of the LFNN in CNN

    Nthe input vector of the RNN in CNN

    the number of layers of RNN

    the degree of system input

    the degree of system output

    a smooth nonlinear function

    the system input

    weight matrix of CNN

    the system output

    Lthe LFNN’s output

    Nthe RNN’s output

    the learning rate for the weight vector

    Subscripts

    B the tank B

    L the LFNN in the CNN

    N the RNN in the CNN

    1 Fu, Y., Chai, T.Y., “Nonlinear multivariable adaptive control using multiple models and neural Networks”,, 43, 1101-1110 (2007).

    2 Zhang, Y., Chen, Z.Q., Yang, P., Yuan, Z.Z., “Multivariable nonlinear proportional-integral-derivative decoupling control based on recurrent neural net works”,...., 12 (5), 677-681 (2004).

    3 Wang, Z., Chen, Z.Z., Sun, Q.L., Yuan, Z.Z., “Multivariable decoupling predictive control based on QFT theory and application in CSTR chemical process”,...., 14 (6), 765-769 (2006).

    4 Zhang, Q., Li, S., “Performance monitoring and diagnosis of multivariable model predictive control using statistical analysis”,...., 14 (2), 207-215 (2006).

    5 Su, B.L, Chen, Z.Z., Yuan, Z.Z., “Multivariable decoupling predictive control with input constraints and its application on chemical process”,...., 14 (2), 216-222 (2006).

    6 Widrow, B., W alach, E., Adaptive Inverse Control, Prentice Hall, New Jersey, US (1986).

    7 Alolinwi, B., Khalil, H.k., “Robust adaptive output feedback control of nonlinear systems without persistence of excitation condition”,, 33, 2025-2032 ( 1997).

    8 Tong, S.C., Chai, T.Y., “Direct adaptive fuzzy output feedback control for uncertain nonlinear systems”,, 19 (3), 257-261 (2004).

    9 Ge, S.S., Li, Y., Lee, T.H., “daptive NN control for a class of strict-feedback discrete-time nonlinear systems”, 39 (5), 807-819 (2003).

    10 Miguel, A.B., Ton, J.J., Van, D.B., “Predictive control based on neural network model with I/O feedback linearization”,.., 72 (17), 1358-1554 (1999).

    11 Song, Y., Chen, Z.Q., Yuan, Z.Z., “Neural network nonlinear predictive control based on tent-map chaos optimization”,...., 15 (4), 539-544 (2007).

    12 Deng, H., Li, H.X., “A novel neural Approximate inverse control for unknown nonlinear discrete dynamical Systems”,.,,:, 35 (1), 115-123 (2005).

    13 He, P., Jagannathan, S., “Reinforcement learning-based output feedback control of nonlinear systems with input constraints”,.,,, 35 (1), 150-154 (2005).

    14 Hovakimyan, N., Nardi, F., Calise, A.J., “A novel error observer-based adaptive output feedback approach for control of uncertain systems”,., 47 (8), 1310-1314 (2002).

    15 Kim, N., Calise, A.J., “Several extensions in methods for adaptive output feedback control”,., 18 (2), 482-494 (2007).

    16 Zhai, L.F., Chai, T.Y., Ge, S.S., “Stable adaptive neural network control of nonaffine nonlinear discrete-time systems and application”, In: 22th IEEE International Symposium on Intelligent Control, Singapore, 602-607 (2007).

    17 Juang, C.F., Chen, J.S., “A recurrent fuzzy-network-based inverse modelling method for a temperature system control”,.,,, 37 (3), 410-417 (2007).

    18 Petlenkov, E., “NN-ANARX structure based dynamic output feedback linearization for control of nonlinear MIMO systems”, In: Mediterranean Conference on Control and Automation, Athens, Greece, T22-009 (2007).

    19 Delgado, A., “Dynamic recurrent neural networks for system identification and control”,, 142 (4), 307-314 (1995).

    20 Li, W.C., Biegler, L.T., “Process control strategies for constrained nonlinear system”,...., 27, 1611-1622 (1988).

    2008-06-24,

    2009-03-20.

    the National Natural Science Foundation of China (60575009, 60574036).

    ** To whom correspondence should be addressed. E-mail: yzhangzz@yahoo.com.cn

    猜你喜歡
    張燕楊鵬
    張燕副教授
    呼喚生命
    THE QUASI-BOUNDARY VALUE METHOD FOR IDENTIFYING THE INITIAL VALUE OF THE SPACE-TIME FRACTIONAL DIFFUSION EQUATION ?
    稱呼
    名字
    決策探索(2018年1期)2018-11-19 13:51:16
    FuzzinessinEnglishAdvertisingTranslation
    Proton Beam Generated by Multi-Lasers Interaction with Rear-Holed Target
    搶紅包
    故事會(huì)(2017年1期)2017-01-05 16:13:03
    海邊的少年
    海峽影藝(2014年4期)2014-12-04 03:01:46
    丟了名字
    亚洲性久久影院| 久久久国产一区二区| 久久久久久久大尺度免费视频| 国产亚洲91精品色在线| 久久精品人妻少妇| 亚洲精华国产精华液的使用体验| 欧美 日韩 精品 国产| videossex国产| 欧美精品国产亚洲| 国产真实伦视频高清在线观看| kizo精华| 国产乱人偷精品视频| 水蜜桃什么品种好| 亚洲色图综合在线观看| 国产精品国产三级国产av玫瑰| 男人舔奶头视频| 网址你懂的国产日韩在线| 免费大片黄手机在线观看| 中文字幕制服av| 欧美丝袜亚洲另类| 午夜福利视频精品| 一个人观看的视频www高清免费观看| 欧美日韩视频高清一区二区三区二| 97超视频在线观看视频| 国产成人免费观看mmmm| 欧美bdsm另类| 成人黄色视频免费在线看| 男女边摸边吃奶| 国产免费福利视频在线观看| 女人久久www免费人成看片| 美女高潮的动态| 午夜爱爱视频在线播放| 午夜免费鲁丝| 97在线视频观看| 亚洲av免费在线观看| 久久久久久伊人网av| 爱豆传媒免费全集在线观看| 99久久精品热视频| 一区二区av电影网| 国产精品秋霞免费鲁丝片| 国产av不卡久久| 亚洲一级一片aⅴ在线观看| 黄片wwwwww| 亚洲精品久久久久久婷婷小说| 日韩欧美 国产精品| 你懂的网址亚洲精品在线观看| 永久免费av网站大全| 深夜a级毛片| 男女下面进入的视频免费午夜| 最近最新中文字幕免费大全7| 一区二区av电影网| 日日撸夜夜添| 亚洲国产欧美人成| 亚洲最大成人av| av免费观看日本| 久久久午夜欧美精品| 哪个播放器可以免费观看大片| av国产免费在线观看| 日韩精品有码人妻一区| 亚洲av男天堂| 五月玫瑰六月丁香| 精品一区二区免费观看| 美女主播在线视频| 久久久午夜欧美精品| 久久精品人妻少妇| 亚洲成人中文字幕在线播放| 亚洲一区二区三区欧美精品 | 一个人看的www免费观看视频| 亚洲三级黄色毛片| av在线老鸭窝| 日韩成人伦理影院| 国产一区二区三区综合在线观看 | 男人爽女人下面视频在线观看| 性色av一级| 特大巨黑吊av在线直播| 国产精品一二三区在线看| 三级国产精品片| 99久久人妻综合| 99久久精品一区二区三区| 久久久久久久亚洲中文字幕| 中文字幕人妻熟人妻熟丝袜美| 国产伦理片在线播放av一区| 中文字幕久久专区| 在线a可以看的网站| 亚洲电影在线观看av| 欧美精品一区二区大全| 免费观看av网站的网址| 久久鲁丝午夜福利片| 波多野结衣巨乳人妻| 亚洲天堂国产精品一区在线| 久久久久性生活片| 婷婷色综合www| 99久国产av精品国产电影| 国产美女午夜福利| 色视频www国产| 欧美成人精品欧美一级黄| 蜜桃亚洲精品一区二区三区| 在线观看人妻少妇| 亚洲av中文字字幕乱码综合| 亚洲最大成人中文| 黄色配什么色好看| 五月开心婷婷网| 国产成人精品久久久久久| 国产精品一区二区性色av| 亚洲一区二区三区欧美精品 | 嫩草影院精品99| 成人黄色视频免费在线看| 91久久精品电影网| 人妻夜夜爽99麻豆av| 免费看a级黄色片| xxx大片免费视频| 青春草亚洲视频在线观看| 亚洲精品影视一区二区三区av| 亚洲精品456在线播放app| 国产午夜精品一二区理论片| 国产成人精品久久久久久| 精品久久久久久电影网| 免费观看性生交大片5| 51国产日韩欧美| 欧美 日韩 精品 国产| 超碰97精品在线观看| 欧美 日韩 精品 国产| 成年av动漫网址| 精品99又大又爽又粗少妇毛片| 丝瓜视频免费看黄片| 97在线人人人人妻| videos熟女内射| 国产久久久一区二区三区| 亚洲精品乱码久久久v下载方式| 亚洲美女搞黄在线观看| 欧美日韩亚洲高清精品| 国产精品国产三级国产专区5o| 最近2019中文字幕mv第一页| 亚洲国产精品成人久久小说| 精品一区二区三区视频在线| 丝袜脚勾引网站| 水蜜桃什么品种好| 水蜜桃什么品种好| 亚洲精品第二区| 亚洲精品一区蜜桃| 久久鲁丝午夜福利片| 日韩人妻高清精品专区| 日韩大片免费观看网站| 六月丁香七月| 午夜福利视频1000在线观看| 老司机影院成人| 久久久久精品性色| 午夜爱爱视频在线播放| 亚洲成人久久爱视频| 久久久久国产精品人妻一区二区| 成年免费大片在线观看| 国产v大片淫在线免费观看| 亚洲精品中文字幕在线视频 | 精品视频人人做人人爽| 成人美女网站在线观看视频| 久久久久久久亚洲中文字幕| 在线观看一区二区三区激情| 男女那种视频在线观看| 精品一区二区三卡| 亚洲av中文字字幕乱码综合| 免费看不卡的av| 亚洲无线观看免费| 岛国毛片在线播放| 99精国产麻豆久久婷婷| 免费观看在线日韩| 边亲边吃奶的免费视频| 日韩av在线免费看完整版不卡| 免费看a级黄色片| eeuss影院久久| 菩萨蛮人人尽说江南好唐韦庄| 各种免费的搞黄视频| 国产精品人妻久久久影院| 久久久国产一区二区| 亚洲精品国产色婷婷电影| 听说在线观看完整版免费高清| 69人妻影院| 丰满少妇做爰视频| 国产精品一区www在线观看| 久久久久性生活片| 18禁动态无遮挡网站| 日日啪夜夜爽| 成人一区二区视频在线观看| 男女国产视频网站| 免费大片黄手机在线观看| 最近中文字幕2019免费版| 神马国产精品三级电影在线观看| 免费观看a级毛片全部| 搡老乐熟女国产| 美女cb高潮喷水在线观看| 中文字幕亚洲精品专区| 晚上一个人看的免费电影| 亚洲国产精品国产精品| 成人欧美大片| 免费大片黄手机在线观看| 身体一侧抽搐| 街头女战士在线观看网站| 亚洲av男天堂| av在线天堂中文字幕| 好男人视频免费观看在线| 国产黄色视频一区二区在线观看| 一级av片app| 一级爰片在线观看| 国产精品99久久久久久久久| 国产午夜福利久久久久久| 看非洲黑人一级黄片| 免费大片18禁| 干丝袜人妻中文字幕| 中国美白少妇内射xxxbb| 国产精品国产三级专区第一集| 欧美性感艳星| 91精品国产九色| 国产成人精品福利久久| 亚洲av中文av极速乱| 免费av毛片视频| 一级毛片久久久久久久久女| 99久国产av精品国产电影| 国产v大片淫在线免费观看| 日韩电影二区| 色网站视频免费| 欧美日韩在线观看h| 激情五月婷婷亚洲| 欧美xxxx黑人xx丫x性爽| 国产精品国产三级国产专区5o| tube8黄色片| 国产精品99久久久久久久久| 国产午夜福利久久久久久| 成人国产麻豆网| 久久精品综合一区二区三区| 亚洲va在线va天堂va国产| 久久精品久久久久久久性| 新久久久久国产一级毛片| av在线亚洲专区| 边亲边吃奶的免费视频| 国产精品秋霞免费鲁丝片| 国产精品女同一区二区软件| 日本一二三区视频观看| 精品99又大又爽又粗少妇毛片| 秋霞伦理黄片| 国产老妇女一区| 欧美日韩在线观看h| 九色成人免费人妻av| 成人无遮挡网站| 99热这里只有是精品在线观看| 联通29元200g的流量卡| 免费av不卡在线播放| 国产午夜精品久久久久久一区二区三区| 国产av不卡久久| 日韩免费高清中文字幕av| 亚洲国产成人一精品久久久| 久久这里有精品视频免费| 日本-黄色视频高清免费观看| 日韩精品有码人妻一区| 日本av手机在线免费观看| 在线免费观看不下载黄p国产| 中文字幕久久专区| 亚洲第一区二区三区不卡| 一区二区av电影网| 舔av片在线| 狂野欧美白嫩少妇大欣赏| 欧美一级a爱片免费观看看| 最近中文字幕2019免费版| 精品国产乱码久久久久久小说| 中国国产av一级| 熟女人妻精品中文字幕| 欧美一级a爱片免费观看看| 国产精品一区二区在线观看99| 国产一区二区三区av在线| 国国产精品蜜臀av免费| 日韩亚洲欧美综合| 又爽又黄a免费视频| 黄色一级大片看看| 免费高清在线观看视频在线观看| 一级片'在线观看视频| 一级毛片我不卡| 国产爽快片一区二区三区| 国产成人一区二区在线| 午夜福利高清视频| 最近最新中文字幕免费大全7| 免费观看无遮挡的男女| 美女高潮的动态| a级一级毛片免费在线观看| 肉色欧美久久久久久久蜜桃 | 午夜福利视频1000在线观看| 国产久久久一区二区三区| 99re6热这里在线精品视频| 91久久精品电影网| 97超视频在线观看视频| 亚洲高清免费不卡视频| 亚洲av不卡在线观看| 午夜免费男女啪啪视频观看| 我的老师免费观看完整版| 亚洲精品成人av观看孕妇| 亚洲国产成人一精品久久久| 亚洲,欧美,日韩| 亚洲精品,欧美精品| 噜噜噜噜噜久久久久久91| 国产 精品1| 赤兔流量卡办理| 国产午夜精品久久久久久一区二区三区| 国产综合精华液| 久久精品国产亚洲av天美| 欧美日韩综合久久久久久| 日本wwww免费看| 午夜福利视频精品| 新久久久久国产一级毛片| 一级毛片黄色毛片免费观看视频| 日韩不卡一区二区三区视频在线| 男男h啪啪无遮挡| 中文在线观看免费www的网站| 肉色欧美久久久久久久蜜桃 | 狂野欧美激情性bbbbbb| 青春草视频在线免费观看| 成年女人看的毛片在线观看| 国产精品久久久久久精品电影| 69人妻影院| 久久精品久久久久久久性| 97超碰精品成人国产| 日本黄大片高清| 亚洲一级一片aⅴ在线观看| 一二三四中文在线观看免费高清| 99热这里只有是精品在线观看| 在线播放无遮挡| 成人毛片60女人毛片免费| 国产精品一及| 王馨瑶露胸无遮挡在线观看| 狠狠精品人妻久久久久久综合| 91狼人影院| 免费高清在线观看视频在线观看| 国产黄a三级三级三级人| 国产在视频线精品| 久久精品国产亚洲av天美| 国产成人精品福利久久| 五月伊人婷婷丁香| 亚洲最大成人av| 最近的中文字幕免费完整| 成人美女网站在线观看视频| 国产av码专区亚洲av| 欧美bdsm另类| 一个人观看的视频www高清免费观看| 国产精品久久久久久精品古装| 中文资源天堂在线| 国产黄色免费在线视频| 亚洲内射少妇av| 国产片特级美女逼逼视频| 欧美一级a爱片免费观看看| 日本-黄色视频高清免费观看| 99久久中文字幕三级久久日本| 亚洲精品国产av成人精品| 涩涩av久久男人的天堂| 在线a可以看的网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲精品成人av观看孕妇| 日本熟妇午夜| 少妇人妻久久综合中文| 一级毛片我不卡| 国产色婷婷99| 自拍偷自拍亚洲精品老妇| 久久精品久久精品一区二区三区| 亚洲不卡免费看| 国产有黄有色有爽视频| 97超视频在线观看视频| 国产精品一区www在线观看| 另类亚洲欧美激情| 亚洲精品,欧美精品| 日日摸夜夜添夜夜爱| 涩涩av久久男人的天堂| 国产免费福利视频在线观看| 欧美少妇被猛烈插入视频| 国产黄色视频一区二区在线观看| 久久久欧美国产精品| 日韩欧美精品v在线| av国产精品久久久久影院| 内地一区二区视频在线| 天堂中文最新版在线下载 | 国模一区二区三区四区视频| 极品少妇高潮喷水抽搐| 身体一侧抽搐| 男女国产视频网站| 国产精品久久久久久精品古装| 亚洲欧美日韩东京热| 99久久精品热视频| 国产 精品1| 搞女人的毛片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美成人午夜免费资源| 永久免费av网站大全| 精品一区在线观看国产| 欧美日韩亚洲高清精品| 国内精品美女久久久久久| 舔av片在线| 久久人人爽人人片av| 国产毛片a区久久久久| 免费不卡的大黄色大毛片视频在线观看| 韩国av在线不卡| 人人妻人人澡人人爽人人夜夜| 亚洲精品色激情综合| 色视频www国产| 美女脱内裤让男人舔精品视频| 久久精品综合一区二区三区| 国产精品伦人一区二区| 欧美日韩综合久久久久久| 久久久久久国产a免费观看| 国产视频内射| 亚洲av二区三区四区| 夫妻午夜视频| 熟妇人妻不卡中文字幕| 亚洲欧美精品自产自拍| a级毛片免费高清观看在线播放| 成年免费大片在线观看| 在线a可以看的网站| av一本久久久久| 亚洲人成网站在线播| 亚洲欧美精品自产自拍| 激情 狠狠 欧美| 日日啪夜夜爽| 成人毛片a级毛片在线播放| 18禁在线播放成人免费| 又爽又黄a免费视频| 午夜福利高清视频| 日韩成人av中文字幕在线观看| 亚洲精品一区蜜桃| 天天躁夜夜躁狠狠久久av| 久久6这里有精品| 亚洲在线观看片| 亚洲欧美日韩无卡精品| 最近手机中文字幕大全| 精品久久久精品久久久| 可以在线观看毛片的网站| 欧美日韩视频精品一区| 国内精品宾馆在线| 国产探花极品一区二区| xxx大片免费视频| 亚洲精品中文字幕在线视频 | 亚洲av男天堂| 天堂俺去俺来也www色官网| 欧美最新免费一区二区三区| 国产亚洲午夜精品一区二区久久 | 中文欧美无线码| 亚洲va在线va天堂va国产| 日韩一区二区视频免费看| eeuss影院久久| 少妇熟女欧美另类| av天堂中文字幕网| 亚洲一级一片aⅴ在线观看| 最近的中文字幕免费完整| av天堂中文字幕网| 日韩强制内射视频| 新久久久久国产一级毛片| 国产精品成人在线| 最近手机中文字幕大全| 欧美日本视频| 国产成人免费观看mmmm| 久久久久性生活片| 国产熟女欧美一区二区| 午夜免费鲁丝| 日韩视频在线欧美| 亚洲欧洲国产日韩| 久久久久国产精品人妻一区二区| 色网站视频免费| 一级a做视频免费观看| 内地一区二区视频在线| 日本-黄色视频高清免费观看| 啦啦啦在线观看免费高清www| 性色av一级| 女人久久www免费人成看片| 最近手机中文字幕大全| a级毛色黄片| 亚洲真实伦在线观看| 午夜爱爱视频在线播放| 欧美日韩综合久久久久久| 国精品久久久久久国模美| 高清视频免费观看一区二区| 亚洲最大成人av| 午夜免费男女啪啪视频观看| 精品久久国产蜜桃| 国产日韩欧美在线精品| 国产精品国产三级国产av玫瑰| 国产欧美日韩一区二区三区在线 | 亚洲av福利一区| 精品久久久噜噜| 少妇人妻久久综合中文| 特大巨黑吊av在线直播| 国产精品偷伦视频观看了| 水蜜桃什么品种好| 成年女人看的毛片在线观看| 国产免费一区二区三区四区乱码| 成年版毛片免费区| 日韩av免费高清视频| 国产亚洲av片在线观看秒播厂| 又大又黄又爽视频免费| 香蕉精品网在线| 亚洲欧美精品专区久久| 99热6这里只有精品| 亚洲av国产av综合av卡| 国产精品久久久久久精品电影小说 | 七月丁香在线播放| 高清毛片免费看| 黄片wwwwww| 国产91av在线免费观看| 日韩伦理黄色片| 欧美极品一区二区三区四区| 自拍偷自拍亚洲精品老妇| 少妇人妻精品综合一区二区| 国内精品美女久久久久久| 亚洲精品国产av成人精品| 久久女婷五月综合色啪小说 | 久久99热6这里只有精品| 国产爱豆传媒在线观看| 国产精品久久久久久精品电影小说 | 天堂网av新在线| 亚洲av免费在线观看| 观看免费一级毛片| 美女国产视频在线观看| 如何舔出高潮| 亚洲精品亚洲一区二区| 国产美女午夜福利| 国产女主播在线喷水免费视频网站| 成人无遮挡网站| 美女脱内裤让男人舔精品视频| 丝袜美腿在线中文| 亚洲国产精品999| 97在线视频观看| 精品一区二区三卡| 五月玫瑰六月丁香| 日本一本二区三区精品| 精品一区二区免费观看| 国产爽快片一区二区三区| av免费观看日本| 极品教师在线视频| 蜜臀久久99精品久久宅男| 午夜爱爱视频在线播放| av网站免费在线观看视频| 五月天丁香电影| 日韩欧美 国产精品| 国产精品一区www在线观看| 天堂中文最新版在线下载 | videos熟女内射| 亚洲av男天堂| 直男gayav资源| 久久精品国产自在天天线| 特大巨黑吊av在线直播| 哪个播放器可以免费观看大片| 97精品久久久久久久久久精品| 两个人的视频大全免费| 亚洲精品日本国产第一区| 免费观看av网站的网址| 插阴视频在线观看视频| 亚洲色图av天堂| 午夜福利视频精品| 三级男女做爰猛烈吃奶摸视频| 天天躁日日操中文字幕| .国产精品久久| 18禁裸乳无遮挡免费网站照片| 亚洲第一区二区三区不卡| 日韩亚洲欧美综合| 亚洲av中文av极速乱| 国产中年淑女户外野战色| freevideosex欧美| 最近的中文字幕免费完整| 男的添女的下面高潮视频| 日韩亚洲欧美综合| 三级男女做爰猛烈吃奶摸视频| 日本av手机在线免费观看| 亚洲性久久影院| 日本av手机在线免费观看| 成人高潮视频无遮挡免费网站| 亚洲色图综合在线观看| 大香蕉久久网| 国产高清有码在线观看视频| 内射极品少妇av片p| 舔av片在线| 十八禁网站网址无遮挡 | 人人妻人人看人人澡| 偷拍熟女少妇极品色| 在线精品无人区一区二区三 | 国产视频首页在线观看| 亚洲av中文字字幕乱码综合| av一本久久久久| 欧美老熟妇乱子伦牲交| 观看美女的网站| 不卡视频在线观看欧美| av在线播放精品| 美女脱内裤让男人舔精品视频| 久久久久网色| 久久久亚洲精品成人影院| 女人被狂操c到高潮| 五月伊人婷婷丁香| 国产欧美日韩一区二区三区在线 | 亚洲av成人精品一二三区| 别揉我奶头 嗯啊视频| 美女主播在线视频| 亚洲人成网站在线播| 国产一区亚洲一区在线观看| 午夜免费男女啪啪视频观看| 天美传媒精品一区二区| 少妇高潮的动态图| 欧美xxxx黑人xx丫x性爽| 日本-黄色视频高清免费观看| 亚洲av免费高清在线观看| 日韩av在线免费看完整版不卡| 热re99久久精品国产66热6| 菩萨蛮人人尽说江南好唐韦庄| 免费人成在线观看视频色| 在线观看美女被高潮喷水网站| 99久久九九国产精品国产免费| 国产亚洲精品久久久com| 日韩人妻高清精品专区| 干丝袜人妻中文字幕| 男女下面进入的视频免费午夜| 久久久久久久久久久丰满| av又黄又爽大尺度在线免费看| 秋霞伦理黄片| 嫩草影院新地址| 夫妻性生交免费视频一级片| 色婷婷久久久亚洲欧美|