• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Novel Systematic Method of Quality Monitoring and Prediction Based on FDA and Kernel Regression*

    2009-05-14 03:04:44ZHANGXi張曦MASile馬思樂YANWeiwu閻威武ZHAOXu趙旭andSHAOHuihe邵惠鶴
    關(guān)鍵詞:威武

    ZHANG Xi (張曦), MA Sile (馬思樂), YAN Weiwu (閻威武), ZHAO Xu (趙旭) and SHAO Huihe (邵惠鶴)

    ?

    A Novel Systematic Method of Quality Monitoring and Prediction Based on FDA and Kernel Regression*

    ZHANG Xi (張曦)1,2, MA Sile (馬思樂)3,**, YAN Weiwu (閻威武)2, ZHAO Xu (趙旭)2and SHAO Huihe (邵惠鶴)2

    1Guangdong Electric Power Research Institute, Guangzhou 510600, China2Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China3School of Control Science and Engineering, Shandong University, Jinan 250061, China

    A novel systematic quality monitoring and prediction method based on Fisher discriminant analysis (FDA) and kernel regression is proposed. The FDA method is first used for quality monitoring. If the process is under normal condition, then kernel regression is further used for quality prediction and estimation. If faults have occurred, the contribution plot in the fault feature direction is used for fault diagnosis. The proposed method can effectively detect the fault and has better ability to predict the response variables than principle component regression (PCR) and partial least squares (PLS). Application results to the industrial fluid catalytic cracking unit (FCCU) show the effectiveness of the proposed method.

    quality monitoring, quality prediction, Fisher discriminant analysis, kernel regression, fluid catalytic cracking unit

    1 Introduction

    It is difficult to measure online some important variables in chemical or biological process due to the limitation of the techniques. These variables are normally determined by offline analyses and calculation or online quality analyzer. Mostly, analysis and online analyzer suffer from long measurement delays or high investment and maintenance. Online estimation (soft sensing) techniques, which are developed recently, are now widely used. It predicts the product quality using the online measurable variables, which are correlated to the primary variable.

    Early work on online estimation assumed that a process model was available. Joseph and Brosilow [1]reported an inferential model developed using a Kalmanfilter [2]. In case the process mechanisms were not well understood, empirical models, such as neural network [3, 4], and multivariate statistical methods, such as principal component analysis (PCA) and partial least squares (PLS), were used to derive a regression model [2, 5-7]. In particular, PLS and its variations have been used to solve many practical regression problems in chemical engineering [6, 8]. Other methods include regression based on model [9] and hybrid methods also have been developed [10, 11]. Clustering has also been used for estimating a variable for which there is no online measurement in a distillation column [12].

    However, online process measurements are often contaminated with data points that deviate significantly from the true values due to instrument failure or changes in operating conditions. So, gross error detection is important in quality estimation. Several statistical methods have been presented, such as Global Test (GT) [13], the Nodal Test (NT) [13, 14], the Measurement Test (MT) [15], and the Generalized Likelihood Ratio (GLR) test to detect gross errors. The above-mentioned methods for errors detection must know the mathematical model of process and make necessary statistical assumption. For complex industrial processes, it is difficult to achieve an accurate mathematical model. These limit application of methods based on statistical test. Fisher discriminant analysis (FDA)-related methods are dimensional reduction techniques that have been widely used in the field of pattern classification [16]. They also have been introduced for fault detection and process monitoring in chemical industry [17-22]. Gross error is equal to faultsin systems. So, FDA is introduced for gross error detection in quality estimation and has a good performance.

    In this article, a systematic method of quality monitoring and prediction based on FDA and kernel regression has been proposed. FDA is first used for fault detection. If the process runs under normal condition, kernel regression method is then performed for quality prediction. Otherwise, the contribution plot of weights in fault feature direction is further used for fault diagnosis. Application results of the industrial fluid catalytic cracking unit (FCCU) show that the integrated method can effectively detect the happening faults and perform quality prediction and estimation.

    2 Preliminary principles of FDA and kernel regression

    2.1 Fisher discriminant analysis

    Fisher discriminant analysis (FDA) is a linear dimensional reduction technique widely used in the field of pattern classification [16]. Chiang. [20] used it first to diagnose faults in chemical process. The aim of FDA is to find the optimal Fisher discriminant vector such that the Fisher criterion function is maximized. The data in high-dimensional feature space then can be projected onto the obtained optimal discriminant vectors for constructing a lower-dimensional feature space [21]. The different class data can be separated mostly in the lower-dimensional Fisher space.

    The between-class-scatter matrix is defined as

    wherenis the number of observations in class. It can be concluded that the total-scatter matrix is equal to the sum of the between-class-scatter matrix and within-class-scatter matrix,

    The optimal discriminant vector can be found by maximizing the Fisher criterion function as follows:

    wherebandware the between-class scatter matrix and within-class scatter matrix. It is equipollent to solve the generalized feature equation as follows:

    2.2 Kernel principle component analysis

    Kernel principle component analysis (KPCA) is a nonlinear extension of PCA in kernel feature subspace. Consider a nonlinear mapping [23]:

    then the PC vectors can be denoted as follows.

    where

    2.3 Kernel principle component regression

    Consider the standard regression model in the feature space,

    then,

    Whereis an diagonal matrix of {1,2,···,λ},is an orthogonal matrix. So the linear regression model can be expressed further as,

    where

    is the new regressor in terms of kernel principal component and it satisfies that

    So the least square estimator of coefficientcan be expressed as

    From the above estimator expression, we can see that it is difficult to finddirectly. Below we show how to findusing the kernel function.

    Denotethe-th component ofandthe-th component of; from the linear regression model, we obtain

    So,

    where

    From above, we know that

    where

    From the definition of matrix,

    We can see that

    So

    3 Quality monitoring and prediction based on FDA and kernel regression

    3.1 The relationship among FDA, KPCA, and KPCR in quality monitoring and estimation

    Kernel principle component regression (KPCR) is the extension of KPCA. KPCA is used for feature selection. Then the extracted features can be used as preprocessing step for least square regression in the feature space. The framework of quality monitoring and estimation is shown in Fig. 1.

    It can be seen from the figure that data are first normalized using the mean and standard deviation of each variable. Then FDA is performed for gross error and fault detection. If the system runs under normal condition, KPCR is further used for quality estimation and prediction. Otherwise, contribution plot of weights in fault feature direction is used for fault diagnosis.

    FDA-related methods have been used for pattern matching and process monitoring. But it is introduced for the first time for gross error detection in quality estimation.

    3.2 The construction of detecting index and control limit

    Figure 1 Flow chart of quality monitoring and estimation

    For online quality monitoring, the distance of projection vectors in low-dimensional Fisher space,newcompares with the control limit*to determine whether a fault has occurred. The distance between feature vectors is defined as:

    A Quality monitoring based on FDA

    (3) Determine the control limit*from the normal data. The control limit is set to allow 99% of the total distances under the threshold.

    (6) Compare the distancenewwith the control limit*. Ifnewis less than the predefined threshold*, the current process feature is considered to represent the normal operating condition. Then use procedures B and C to perform quality prediction and estimation; if the fault has occurred, use step (7) for fault diagnosis.

    B Develop normal quality prediction and estimation model

    (1) Acquire the training data and normalize it using mean and standard deviation of each variable.

    where

    (4) Calculate the transformed regressor matrixas follows:

    (6) Calculate the predictions of training data as follows:

    C Online estimation and prediction procedure

    (1) Obtain new data and scale it with the mean and variance of each variable.

    (3) Mean centering of the test kernel matrix is as follows

    (4) Calculate the transformed regressor matrixas follows:

    4 Application studies and discussion

    4.1 Application results of the FCCU process

    Fluid catalytic cracking unit (FCCU) is the core unit of the oil secondary operation. Its operation conditions strongly affect the yield of light oil in petroleum refining. In general, FCCU consists of reactor- regenerator subsystem, fractionator subsystem, absorber-stabilizer subsystem and gas sweetening subsystem. The main aim of fractionator subsystem is to split reaction-cracked oil-gas according to a fractional distillation process. Prime products of fractionator subsystem include crude gasoline, light diesel oil, and slurry [7]. To control the product quality, the yield rate of gasoline is calculated offline every 8 hours. Significant delay (often several hours) will incur such that the measured values cannot be used as feedback signals for quality control systems. So it is necessary to estimate it online. However, when using online estimation, the results are often contaminated with data points that deviate significantly from the true values due to instrument failure or changes in operating conditions. So, it is essential to perform quality monitoring and avoiding wrong operations.

    The proposed method is applied to the quality monitoring and prediction of the yield rate of gasoline. The training and testing samples are collected from data of the distributed control system (DCS) and the corresponding daily laboratory analysis of Shijiazhuang Oil Refinery Factory, China. The input variables for quality monitoring and prediction are selected according to the principle that the variables which affected response variable most are selected first. Based on analysis to the process, it is found that the main variables which contribute to the yield rate of gasoline are flow rate of fresh oil, flow rate of reflux oil, temperature of catalytic reaction, overhead temperature of the main fractionating tower, the extraction temperature of light diesel oil, and bottom temperature of stabilizer column. Hence, these six variables are used as inputs for quality monitoring and prediction. Yield rate is used as the output of estimation model.

    We first collect two data sets and each includes 100 normal samples. They are used as training and testing data. The monitoring result using FDA is given in Fig. 2. We can see that no samples exceed the control limit when the system is normal. The monitoring results using PCA is shown in Fig. 3, it can be seen from the figure that there are a few samples exceed the 99% limit although the process is normal. The monitoring performance of FDA is better than PCA.

    Figure 2 Quality monitoring plot of normal data using FDA

    Figure 3 Quality monitoring plot of normal data using PCA

    Figure 4 Estimation results by KPCR (Normal data)

    Figure 6 Quality monitoring plot of fault data using FDA

    When the process is under normal condition, quality estimation can be further performed and appropriate kernel must be first chosen. The radial basis function (RBF) kernel is used as the selected kernel function andis 5.0 in this case.

    The prediction results using kernel regression are shown in Figs. 4 and 5. The upper part of Fig. 4 shows the actual and predicted values of training and testing data and the lower part shows the absolute error between actual and predicted values. Fig. 5 shows the predicted results by another method. In such plots, the data will fall on the diagonal (predicted values equal to actual values) if the model fits the data perfectly. It also shows the residual values of training and testing data. We can see from Fig. 4 that the KPCR model predicts the actual value with a relatively good accuracy. The absolute error is small. The same results can be seen in Fig. 5, in which the predicted values are plotted against observed data and the data shifts to a compact diagonal distribution on the plot. The prediction residuals are close to zero and have no significant outliers.

    The estimation performance can also be evaluated in terms of the root-mean-square-error (RMSE) criterion. The RMSE values for training and testing data of KPCR method in this case are 0.5112 and 0.5843, respectively. It also shows relatively good estimation results.

    Remark The RMSE index is defined as [28]:

    Figure 7 Contribution plot of weights in the feature direction

    Figure 8 Quality monitoring plot of fault data using PCA

    Figure 9 Estimation results by KPCR (Fault data)

    We then select a test data set of 100 samples including a fault of 10% decrease in the flow rate of fresh oil. The fault is introduced in sample 50 and persists to the end of the process. The PCA monitoring chart for the fault is shown in Fig. 8. It indicates that the square predicted error (SPE) statistic has a response to the fault happening; only a few samples delay. But it is not very clear. The corresponding FDA monitoring chart is shown in Fig. 6. In contrast to Fig. 8, we can see that the statistic distance increases drastically when the fault occurs at sample 50 and exceeds the 99% control limit. It also has better performance than PCA.

    After a fault has occurred, fault diagnosis is performed to identify the root cause. Fig. 7 is the contribution plot in the fault feature direction. It displays that variable 1 is primarily responsible for the fault deviation. Variable 1 corresponds to the flow rate of fresh oil. So the diagnosis result is right. The early detection and determination of the fault’s root cause will guide the operator to take correct action promptly, which could maintain the final product well.

    The prediction results of yield rate based on kernel regression are shown in Figs. 9 and 10. From Fig. 9, we can see that before the fault occurs, KPCR has good prediction results. But after that, the prediction results become worse. The absolute error is large and the prediction values far derivate from the actual values. The same results can be seen in Fig. 10. Before the fault is introduced, the data distribution is compactly towards the diagonal and the residual is low. But the test data distribution is scattered and the residuals are large after the fault happens. The total RMSE for the test data is 1.9824. If the faulty values are used as feedback signals in the control system, it will lead to wrong operations. So, quality monitoring is very important and necessary to guarantee the prediction results well.

    4.2 Further discussion

    The performance of the estimation method based on KPCR is influenced by many factors. We will use thesamples used in Section 4.1 to discuss them extensively.

    I Performance comparison of different methods

    To demonstrate the predominance of the proposed method, PCR and PLS are further applied, followed by a comparison with the KPCR prediction method. The estimation results using PCR and PLS are shown in Figs. 11-14.

    Figure 11 Estimation results by PCR

    Figure 13 Estimation results by PLS

    Figure 15 Estimation results with linear kernel

    From the figures, we can see that, compared with PCR and PLS, KPCR (shown in Figs. 4 and 5) has better estimation performance.

    Because KPCR is nonlinear modeling method, it has better prediction results. So it has a better ability to deal with nonlinear data. In this study, there are complex nonlinear relationships among input and response variables. So, projecting nonlinear input data onto a linear subspace by PCR or PLS cannot model the nonlinear relationships properly. In contrast, KPCR tries to model such nonlinear relationships preferably by a nonlinear kernel mapping into a feature space.

    II Performance influence of different kernels in KPCR

    When we estimate quality variables by KPCR, the choice of kernel is important. Different kernels have different influence on the performance of prediction. We use the linear kernel, polynomial kernel, and radial basis kernel for comparison, which are listed below.

    The KPCR model estimation results using linear and polynomial kernel (the parameteris chosen as 5.0)are shown in Figs. 15-18. It can be seen from the figures that using linear and polynomial kernels cannot obtain good estimation results compared to using radial basis kernel (shown in Figs. 4 and 5).

    The reason for this is that the input variables of the data set used are nonlinear correlated with each other and with the response variable. When linear and polynomial kernels are used, they cannot model the nonlinear correlation structure properly due to the risk of including noise in the model while trying to account nonlinearity. From our experience, radial basis kernel is more suitable for modeling such nonlinear relationships compared to other kernel functions by selecting appropriate parameter.

    III Performance influence of parameterin the RBF kernel

    Figures 19 and 20 present the estimation results of response variables for training and testing data with parameterequals to 0.01, 0.05, 0.5, 5, and 20. It can be seen from the figures that for training and testing data, whenis larger or smaller over a specific threshold, the estimation performance becomes worse. Therefore, to get good prediction results, the appropriate choice of parameteris important. In this case, whenis equal to 5.0, good estimation performance can be achieved. The same results can be obtained from the RMSE values of different c (shown in Table 1). Whenis equal to 5.0, the RMSE values are 0.5112 and 0.5843. They are the smallest among all the training and testing data.

    Figure 16 Estimation parity plot with linear kernel

    Figure 17 Estimation results with polynomial kernel

    Table 1 RMSE of different parameter c in kernel principal component regression (RBF kernel)

    5 Conclusions

    In this article, a systemic quality monitoring and prediction method based on FDA and kernel regression is proposed. The FDA monitoring method is first performed to detect process condition. If the process is normal, kernel regression is further used to do quality prediction and estimation. If fault has occurred, contribution plot of the weights in the feature direction is used for fault diagnosis. The improvement in prediction performance observed, from PCR, PLS to KPCR, suggests that nonlinear correlation structures should not be modeled using linear approaches due to the risk of including noise in the model while trying to account the nonlinearity. The application results of the industrial fluid catalytic cracking unit (FCCU) show the effectiveness of the proposed method.

    However, when the proposed method is used, how to choose kernel function and identify the kernel parameter is still an open problem. At present, we only solve this with our experience. How to settle this using a systematic approach is still a challenging issue. We believe that for the problem to be further solved, the proposed method will give more promising results.

    AcknowledgEments

    ..

    1 Joseph, B., Brosilow, C.B., “Inferential control of processes (1) Steady state analysis and design”,., 124, 485-508 (1978).

    2 Lin, B., Recke, B., Knudsen, J.K.H., J?rgensen, S.B, “A systematic approach for soft sensor development”,..., 31, 419-425 (2007).

    3 Qin, S.J., McAvoy, T.J., “Nonlinear PLS modeling using neural networks”,..., 16, 379-391 (1992).

    4 Radhakrishnan, V.R., Mohamed, A.R., “Neural networks for the identification and control of blast furnace hot metal quality”,., 10, 509-524 (2000).

    5 Kresta, J.V., Marlin, T.E., MacGregor, J.F., “Development of inferential process models using PLS”,..., 18, 597-611 (1994).

    6 Park, S., Han, C., “A nonlinear soft sensor based on multivariate smoothing procedure for quality estimation in distillation columns”,..., 24, 871-877 (2000).

    7 Yan, W., Shao, H., Wang, X., “Soft sensing modeling based on support vector machine and Bayesian model selection”,..., 28, 1489-1498 (2004).

    8 Skagerberg, B., MacGrgor, J.F., Kiprissides, C., “Multivariate data analysis applied to low-density polyethylene reactors”,...., 14, 341-356 (1992).

    9 Chen, S., Billings, S.A., Cowan, C.T.F., Grant, P.M., “Practical identification of NARMAX models using radial basis functions”,.., 52, 1327-1350 (1990).

    10 Ljung, L., System Identification: Theory for the User (Information and System Science Series), Prentice-Hall, New Jersey (1987).

    11 Wang, X., Luo, R., Shao, H., “Designing a soft sensor for a distillation column with the fuzzy distributed radial basis function neural network”, In: Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, Japan (1996).

    12 Espinoza, P. A., Gonzalez, G. D., Casali, A., Ardiles, C., “Design of soft sensors using cluster techniques”, In: Proceedings of International Mineral Processing Congress, San Francisco, USA (1995).

    13 Reilly, P., Carpani, R., “Application of statistical theory of adjustments to material Balances”, In: 13th Canadian Chemical Engineering Conference, Montreal, Canada (1963).

    14 Mah, R.S.H., Stanley, G., Downing, D., “Reconciliation and rectification of process flow and inventory data”,....., 15, 175-183 (1976).

    15 Mah, R.S.H., Tamhane, A.C., “Detection of gross errors in process data”,., 28, 828-830 (1982).

    16 Duda, R.O., Hart, P.E., Stork, D.G., “Pattern classification”, 2nd ed., Wiley, New York (2001).

    17 Cho, H.W., “Identification of contributing variables using kernel-based discriminant modeling and reconstruction”,.., 33, 274-285 (2007).

    18 Jemwa, G.T., Aldrich, C., “Kernel-based fault diagnosis on mineral processing plants”,.., 19, 1149-1162 (2006).

    19 Zhang, X., Zhao, X., Yan, W.W., Shao, H.H., “Nonlinear biological batch process monitoring and fault identification based on kernel fisher discriminant analysis”,., 42, 1200-1210 (2007).

    20 Chiang, L.H., Russell, E.L., Braatz, R.D., “Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis”,...., 50, 243-252 (2000).

    21 He, Q.P., Qin, S.J., “A new fault diagnosis method using fault directions in fisher discriminant analysis”,., 51, 555-571 (2005).

    22 Zhao, X., Yan, W., Shao, H., “Monitoring and fault diagnosis for batch process based on feature extract in Fisher subspace”,...., 14, 759-764 (2006).

    23 Sch?lkopf, B., Smola, A., Müller, K.R., “Nonlinear component analysis as a kernel eigenvalue problem”,., 10, 1299-1319 (1998).

    24 Lee, J.M., Yoo, C., Choi, S.W., Vanrolleghem, P.A., Lee, I.B., “Nonlinear process monitoring using kernel principal component analysis”,..., 59, 223-234 (2004).

    25 Rosipal, R., Girolami, M., Trejo, L. J., Cichocki, A., “Kernel PCA for feature extraction and de-noising in nonlinear regression”,.., 10, 231-243 (2001).

    26 Dachapak, C., Kanae, S., Yang, Z.J., Wada, K., “Kernel principal component regression in reproducing Hilbert space”,(.....), 34, 213-218 (2002).

    27 Chiang, L.H., Russell, E.L., Braatz, R.D., Fault Detection and Diagnosis in Industrial Systems, Springer, Hong Kong (2001).

    28 Lee, D.S., Lee, M.W., Woo, S.H., Kim, Y.J., Park, J.M., “Multivariate online monitoring of a full-scale biological anaerobic filter process using kernel-based algorithms”,...., 45, 4335-4344 (2006).

    29 Kim, K., Lee, J. M., Lee, I. B., “A novel multivariate regression approach based on kernel partial least squares with orthogonal signal correction”,...., 79, 22-30 (2005).

    30 Wold, S., “Cross-validatory estimation of components in factor and principal components models”,, 20, 397-405 (1978).

    2008-01-27,

    2008-11-05.

    the National Natural Science Foundation of China (60504033) and the Open Project of State Key Laboratory of Industrial Control Technology in Zhejiang University (0708004).

    ** To whom correspondence should be addressed. E-mail: masile@sdu.edu.cn

    猜你喜歡
    威武
    高傲的大公雞
    威武遼寧艦(一)
    山東艦,威武入列
    威武老槍56半
    威武的獅子
    幼兒畫刊(2018年4期)2018-04-11 03:58:56
    萌寵樂園
    威武大角羊
    威武蝦將軍
    小蝦威武
    威武的甲蟲
    国产精品不卡视频一区二区| av免费观看日本| 色网站视频免费| h视频一区二区三区| 久久精品国产a三级三级三级| 在线免费十八禁| 2021少妇久久久久久久久久久| videossex国产| xxx大片免费视频| 国产精品成人在线| freevideosex欧美| 国产永久视频网站| 久久精品国产亚洲av涩爱| 国产免费又黄又爽又色| 久热久热在线精品观看| 18禁动态无遮挡网站| 综合色丁香网| 日本vs欧美在线观看视频 | .国产精品久久| 老师上课跳d突然被开到最大视频| 亚洲欧美成人综合另类久久久| 91久久精品电影网| 黑丝袜美女国产一区| 不卡视频在线观看欧美| 日韩一区二区三区影片| 最后的刺客免费高清国语| 91在线精品国自产拍蜜月| 18禁在线播放成人免费| 日韩欧美一区视频在线观看 | 亚洲精品aⅴ在线观看| 国产熟女欧美一区二区| 国产精品一区二区三区四区免费观看| 99国产精品免费福利视频| 久久精品国产亚洲av涩爱| 伦精品一区二区三区| 国产伦理片在线播放av一区| av专区在线播放| 丝袜喷水一区| 18+在线观看网站| 熟女av电影| 高清午夜精品一区二区三区| 国产一区亚洲一区在线观看| 亚洲av免费高清在线观看| 久久精品国产鲁丝片午夜精品| 人妻制服诱惑在线中文字幕| av国产免费在线观看| 国产高清国产精品国产三级 | 亚洲av日韩在线播放| 一区二区av电影网| 中文字幕精品免费在线观看视频 | 亚洲精品国产色婷婷电影| 国产精品久久久久久精品电影小说 | 欧美日韩综合久久久久久| 国产精品av视频在线免费观看| 国产精品伦人一区二区| 男女啪啪激烈高潮av片| 日本av免费视频播放| 国产伦精品一区二区三区视频9| 免费av中文字幕在线| 国产精品免费大片| 色哟哟·www| 精品久久久久久久久av| 亚洲精品国产成人久久av| av国产精品久久久久影院| 大香蕉97超碰在线| 美女视频免费永久观看网站| 黄色欧美视频在线观看| 久久久久久久久久成人| 日韩欧美 国产精品| 精品人妻偷拍中文字幕| 视频区图区小说| 亚洲精品色激情综合| 99久久中文字幕三级久久日本| 午夜激情久久久久久久| 国产高清有码在线观看视频| 亚洲精品国产av成人精品| 国产精品一二三区在线看| av在线app专区| 国产毛片在线视频| 波野结衣二区三区在线| 国产极品天堂在线| 亚洲欧美成人综合另类久久久| 多毛熟女@视频| 一区二区三区免费毛片| 欧美3d第一页| 日韩一区二区视频免费看| 亚洲国产精品999| 在线看a的网站| 少妇人妻一区二区三区视频| 国产国拍精品亚洲av在线观看| 视频中文字幕在线观看| 国产精品嫩草影院av在线观看| 午夜精品国产一区二区电影| 99精国产麻豆久久婷婷| 黄色日韩在线| 亚洲精品乱码久久久久久按摩| 少妇人妻 视频| av一本久久久久| 国产精品精品国产色婷婷| 国产在视频线精品| 欧美精品亚洲一区二区| 蜜桃亚洲精品一区二区三区| 国产日韩欧美在线精品| 欧美人与善性xxx| 日本免费在线观看一区| 午夜日本视频在线| 3wmmmm亚洲av在线观看| 欧美一区二区亚洲| 老师上课跳d突然被开到最大视频| 国产免费福利视频在线观看| 日韩av免费高清视频| 狂野欧美白嫩少妇大欣赏| 熟女av电影| 国产 一区精品| 欧美zozozo另类| 国产乱人偷精品视频| 亚洲欧美一区二区三区黑人 | 国产免费福利视频在线观看| 日韩欧美一区视频在线观看 | 免费在线观看成人毛片| 色婷婷久久久亚洲欧美| 色视频www国产| 亚洲人成网站高清观看| 亚洲,欧美,日韩| 亚洲av欧美aⅴ国产| 七月丁香在线播放| 精品少妇黑人巨大在线播放| 国产午夜精品久久久久久一区二区三区| 国产高清有码在线观看视频| 欧美97在线视频| 男人舔奶头视频| 在线观看美女被高潮喷水网站| 国产精品久久久久久精品电影小说 | 国产男人的电影天堂91| 久久影院123| 99久久精品国产国产毛片| 中文字幕制服av| 午夜视频国产福利| 伊人久久精品亚洲午夜| 日本黄大片高清| 最黄视频免费看| 精品一区在线观看国产| 亚洲欧美日韩卡通动漫| 久久国产亚洲av麻豆专区| 亚洲欧美日韩另类电影网站 | 在线看a的网站| 国产精品爽爽va在线观看网站| 色视频www国产| 女性生殖器流出的白浆| 精品一区在线观看国产| 亚洲美女搞黄在线观看| 久久久久久九九精品二区国产| 中国国产av一级| 亚洲国产成人一精品久久久| 国产精品一区二区性色av| 黑人猛操日本美女一级片| 热re99久久精品国产66热6| 欧美激情极品国产一区二区三区 | 日韩欧美一区视频在线观看 | 啦啦啦视频在线资源免费观看| 国产在线一区二区三区精| 制服丝袜香蕉在线| 精品少妇久久久久久888优播| 精品亚洲乱码少妇综合久久| 久久久午夜欧美精品| 亚洲国产精品一区三区| 女性被躁到高潮视频| 国产大屁股一区二区在线视频| 高清视频免费观看一区二区| 91久久精品电影网| 亚洲精品色激情综合| 欧美xxxx黑人xx丫x性爽| 国产精品伦人一区二区| 国产又色又爽无遮挡免| av.在线天堂| 亚洲美女黄色视频免费看| 久久人人爽人人爽人人片va| 18禁裸乳无遮挡免费网站照片| 极品教师在线视频| kizo精华| 1000部很黄的大片| 男人爽女人下面视频在线观看| 18禁裸乳无遮挡免费网站照片| 久久久精品免费免费高清| 精品国产一区二区三区久久久樱花 | 精品久久国产蜜桃| 一级毛片久久久久久久久女| 久久精品夜色国产| 久久精品国产鲁丝片午夜精品| 欧美人与善性xxx| 免费高清在线观看视频在线观看| 日韩大片免费观看网站| 91在线精品国自产拍蜜月| 国产v大片淫在线免费观看| 在线播放无遮挡| 欧美日韩一区二区视频在线观看视频在线| 少妇人妻一区二区三区视频| 国产精品嫩草影院av在线观看| 久久av网站| 精品久久久久久电影网| 美女高潮的动态| av福利片在线观看| 激情五月婷婷亚洲| 观看免费一级毛片| 一区在线观看完整版| 亚洲欧美清纯卡通| 久久久久国产网址| 大码成人一级视频| 熟妇人妻不卡中文字幕| 午夜日本视频在线| 18禁在线无遮挡免费观看视频| 美女视频免费永久观看网站| 欧美激情极品国产一区二区三区 | 自拍欧美九色日韩亚洲蝌蚪91 | 狂野欧美白嫩少妇大欣赏| 日本欧美视频一区| 欧美日韩综合久久久久久| 亚洲欧美精品专区久久| 免费av中文字幕在线| 日韩 亚洲 欧美在线| h视频一区二区三区| 久久久久久九九精品二区国产| 久久久国产一区二区| 日韩欧美精品免费久久| 国产精品欧美亚洲77777| 97精品久久久久久久久久精品| 亚洲国产日韩一区二区| 国产高清国产精品国产三级 | av又黄又爽大尺度在线免费看| 超碰97精品在线观看| 国产有黄有色有爽视频| 91久久精品国产一区二区三区| 亚洲精品乱码久久久v下载方式| 男女啪啪激烈高潮av片| 亚洲四区av| 99久久精品一区二区三区| 欧美精品人与动牲交sv欧美| 日韩不卡一区二区三区视频在线| 国产视频首页在线观看| 精品久久久精品久久久| 晚上一个人看的免费电影| 亚洲精品一区蜜桃| 精品久久久噜噜| 国产成人精品福利久久| av网站免费在线观看视频| 最近最新中文字幕免费大全7| av卡一久久| 赤兔流量卡办理| 亚洲国产av新网站| 欧美 日韩 精品 国产| 久久久久久九九精品二区国产| 天堂8中文在线网| av在线老鸭窝| 亚洲欧美成人综合另类久久久| 少妇熟女欧美另类| 成人毛片60女人毛片免费| 欧美zozozo另类| 亚洲人成网站在线观看播放| 五月玫瑰六月丁香| 又爽又黄a免费视频| 自拍偷自拍亚洲精品老妇| 中文字幕精品免费在线观看视频 | 国精品久久久久久国模美| 国产久久久一区二区三区| 久久国产亚洲av麻豆专区| 欧美xxxx黑人xx丫x性爽| 精品久久国产蜜桃| 免费观看在线日韩| 国产免费视频播放在线视频| 久热这里只有精品99| 五月伊人婷婷丁香| 狂野欧美白嫩少妇大欣赏| 欧美区成人在线视频| 国产精品女同一区二区软件| 久久久精品免费免费高清| 我的女老师完整版在线观看| 免费看av在线观看网站| 国产极品天堂在线| 狂野欧美激情性bbbbbb| 久久久久久九九精品二区国产| 国模一区二区三区四区视频| 伦理电影大哥的女人| 成人影院久久| 秋霞伦理黄片| 大片电影免费在线观看免费| 国产 一区 欧美 日韩| 一区在线观看完整版| 最近的中文字幕免费完整| 日本免费在线观看一区| 18禁裸乳无遮挡免费网站照片| 亚洲最大成人中文| av一本久久久久| 成人综合一区亚洲| 日韩大片免费观看网站| 精品人妻一区二区三区麻豆| 国产精品秋霞免费鲁丝片| 成年免费大片在线观看| 国产黄色免费在线视频| 人妻少妇偷人精品九色| av在线蜜桃| 美女内射精品一级片tv| 看免费成人av毛片| 黄色怎么调成土黄色| 午夜免费男女啪啪视频观看| 2018国产大陆天天弄谢| 国产成人精品一,二区| 少妇人妻久久综合中文| 97在线人人人人妻| 亚洲av.av天堂| 亚洲人成网站在线播| 大陆偷拍与自拍| 2018国产大陆天天弄谢| 日韩欧美精品免费久久| 狠狠精品人妻久久久久久综合| 日日摸夜夜添夜夜添av毛片| 国产免费福利视频在线观看| 色婷婷久久久亚洲欧美| 狂野欧美白嫩少妇大欣赏| 国产在线视频一区二区| 一级片'在线观看视频| 欧美 日韩 精品 国产| 亚洲av日韩在线播放| 午夜福利视频精品| 亚洲色图av天堂| 午夜免费鲁丝| 91狼人影院| 2018国产大陆天天弄谢| 国产淫语在线视频| 亚洲国产欧美在线一区| 伊人久久国产一区二区| 一区二区av电影网| 欧美精品亚洲一区二区| 亚洲最大成人中文| 一区二区av电影网| 女性被躁到高潮视频| 在线观看免费视频网站a站| 国产真实伦视频高清在线观看| 大片免费播放器 马上看| h视频一区二区三区| 一区在线观看完整版| 亚洲国产精品成人久久小说| 亚洲av日韩在线播放| 春色校园在线视频观看| 精品国产露脸久久av麻豆| 午夜福利视频精品| 久久女婷五月综合色啪小说| 精品久久久精品久久久| 你懂的网址亚洲精品在线观看| 久久韩国三级中文字幕| av天堂中文字幕网| 亚洲综合精品二区| 日本-黄色视频高清免费观看| 能在线免费看毛片的网站| 女性生殖器流出的白浆| 六月丁香七月| 国产高清不卡午夜福利| 日韩免费高清中文字幕av| 国产男女超爽视频在线观看| 亚洲欧美清纯卡通| 亚洲欧美一区二区三区黑人 | 亚洲欧美一区二区三区国产| 亚洲一区二区三区欧美精品| 最近的中文字幕免费完整| 精品人妻偷拍中文字幕| 免费黄色在线免费观看| 婷婷色麻豆天堂久久| 国产美女午夜福利| 成人毛片60女人毛片免费| 久久久色成人| av网站免费在线观看视频| 国产片特级美女逼逼视频| 成年美女黄网站色视频大全免费 | 欧美成人a在线观看| 黄色一级大片看看| 美女内射精品一级片tv| 国产av码专区亚洲av| 最后的刺客免费高清国语| 色网站视频免费| 一区二区三区免费毛片| 夜夜看夜夜爽夜夜摸| 国产亚洲精品久久久com| 免费观看av网站的网址| 亚洲av免费高清在线观看| 国产免费福利视频在线观看| a 毛片基地| 22中文网久久字幕| 人妻少妇偷人精品九色| 日日啪夜夜撸| 美女高潮的动态| 91aial.com中文字幕在线观看| 干丝袜人妻中文字幕| 亚洲真实伦在线观看| 成年免费大片在线观看| 亚洲精品日韩av片在线观看| 女的被弄到高潮叫床怎么办| 久久99热这里只有精品18| 国产乱人偷精品视频| 亚洲一级一片aⅴ在线观看| 亚洲人成网站高清观看| 亚洲成色77777| 高清不卡的av网站| 国产在线男女| 岛国毛片在线播放| 国产一区二区三区综合在线观看 | 高清黄色对白视频在线免费看 | 黄片wwwwww| 大片免费播放器 马上看| 18禁在线无遮挡免费观看视频| 精品少妇黑人巨大在线播放| 国产免费视频播放在线视频| 亚洲欧美日韩东京热| 丰满乱子伦码专区| 久久久久久人妻| 免费观看av网站的网址| 99九九线精品视频在线观看视频| 亚洲精品一二三| 青青草视频在线视频观看| 精品少妇黑人巨大在线播放| 国产成人a∨麻豆精品| 三级经典国产精品| 国产综合精华液| 一个人免费看片子| 欧美三级亚洲精品| 各种免费的搞黄视频| 嘟嘟电影网在线观看| 久久久久久九九精品二区国产| 最近手机中文字幕大全| 久久av网站| 一边亲一边摸免费视频| 国产在线一区二区三区精| 街头女战士在线观看网站| 国产淫片久久久久久久久| 国产精品一区二区在线观看99| 国产精品女同一区二区软件| 国产精品不卡视频一区二区| 国精品久久久久久国模美| 国产精品一区二区在线观看99| 一区二区三区乱码不卡18| 国产av码专区亚洲av| 国产精品久久久久久精品电影小说 | 国产精品三级大全| 欧美+日韩+精品| 高清不卡的av网站| 天堂中文最新版在线下载| 久久久色成人| 亚洲精品,欧美精品| 18禁动态无遮挡网站| 亚洲国产精品专区欧美| 成年女人在线观看亚洲视频| 欧美一区二区亚洲| 黄色日韩在线| 简卡轻食公司| av免费观看日本| 极品少妇高潮喷水抽搐| 欧美国产精品一级二级三级 | 国产熟女欧美一区二区| 亚洲内射少妇av| 国产大屁股一区二区在线视频| 18禁动态无遮挡网站| 国产精品一区二区性色av| av卡一久久| 欧美激情国产日韩精品一区| 久久久精品94久久精品| 青春草视频在线免费观看| 久久久久久伊人网av| 一级爰片在线观看| 精品一区在线观看国产| 大香蕉久久网| 日本欧美国产在线视频| 欧美亚洲 丝袜 人妻 在线| 蜜桃亚洲精品一区二区三区| 国产成人免费观看mmmm| 国产av一区二区精品久久 | 国产亚洲一区二区精品| 菩萨蛮人人尽说江南好唐韦庄| 又黄又爽又刺激的免费视频.| 欧美国产精品一级二级三级 | 欧美日韩精品成人综合77777| 久久精品国产鲁丝片午夜精品| 啦啦啦在线观看免费高清www| 国产精品国产av在线观看| 最近中文字幕高清免费大全6| 最近中文字幕2019免费版| 简卡轻食公司| 五月伊人婷婷丁香| 在线观看一区二区三区激情| 成人特级av手机在线观看| 看免费成人av毛片| 毛片女人毛片| 日本与韩国留学比较| 伊人久久国产一区二区| 97在线视频观看| 免费大片黄手机在线观看| 欧美xxxx黑人xx丫x性爽| 日韩欧美 国产精品| 免费看日本二区| 十分钟在线观看高清视频www | 免费看光身美女| 国产在视频线精品| 久久久午夜欧美精品| 九九爱精品视频在线观看| 午夜激情久久久久久久| 国产探花极品一区二区| 最后的刺客免费高清国语| 中文字幕av成人在线电影| 亚洲精品456在线播放app| 我的女老师完整版在线观看| 亚洲精华国产精华液的使用体验| av卡一久久| av网站免费在线观看视频| 国产精品蜜桃在线观看| 黑人高潮一二区| 人妻 亚洲 视频| 欧美zozozo另类| 亚洲精品aⅴ在线观看| 超碰97精品在线观看| 十分钟在线观看高清视频www | 免费av不卡在线播放| 国产 精品1| 婷婷色综合大香蕉| 日韩视频在线欧美| 日韩成人av中文字幕在线观看| 日本免费在线观看一区| 色视频www国产| 七月丁香在线播放| 欧美日本视频| 亚洲婷婷狠狠爱综合网| 婷婷色麻豆天堂久久| 国产久久久一区二区三区| 精品久久国产蜜桃| 亚洲中文av在线| 国产人妻一区二区三区在| 美女主播在线视频| 亚洲丝袜综合中文字幕| 啦啦啦视频在线资源免费观看| av在线蜜桃| 极品教师在线视频| 免费久久久久久久精品成人欧美视频 | 一本—道久久a久久精品蜜桃钙片| 美女高潮的动态| 免费高清在线观看视频在线观看| 久久精品国产亚洲网站| 免费人妻精品一区二区三区视频| 午夜激情福利司机影院| 亚洲精品视频女| 国产中年淑女户外野战色| 2022亚洲国产成人精品| 国产美女午夜福利| 亚洲精品自拍成人| 水蜜桃什么品种好| 亚洲av中文av极速乱| 熟女人妻精品中文字幕| 男女啪啪激烈高潮av片| 狂野欧美激情性bbbbbb| 亚洲av中文av极速乱| a级毛色黄片| 蜜臀久久99精品久久宅男| 少妇人妻精品综合一区二区| av在线观看视频网站免费| 成人18禁高潮啪啪吃奶动态图 | 美女cb高潮喷水在线观看| 国产精品久久久久久久电影| 欧美日韩国产mv在线观看视频 | 亚洲国产最新在线播放| 欧美日韩综合久久久久久| 高清欧美精品videossex| 国产免费福利视频在线观看| 中文乱码字字幕精品一区二区三区| 边亲边吃奶的免费视频| 日韩一区二区三区影片| 国产精品无大码| 亚洲图色成人| 黑人高潮一二区| 久久婷婷青草| 男女国产视频网站| 国产成人一区二区在线| av在线播放精品| 少妇高潮的动态图| 最后的刺客免费高清国语| 成年美女黄网站色视频大全免费 | 日日撸夜夜添| 夜夜爽夜夜爽视频| 97在线视频观看| 十八禁网站网址无遮挡 | 中文字幕制服av| 一级毛片电影观看| 国产熟女欧美一区二区| 国产精品伦人一区二区| 亚洲国产欧美人成| 99精国产麻豆久久婷婷| 三级国产精品片| 久久久久视频综合| 九草在线视频观看| 精品人妻熟女av久视频| 亚洲欧洲国产日韩| 欧美高清成人免费视频www| 婷婷色综合www| 3wmmmm亚洲av在线观看| 国产在线男女| 久久国内精品自在自线图片| 黄片wwwwww| 免费看不卡的av| 一本一本综合久久| 亚洲欧美成人综合另类久久久| 91精品一卡2卡3卡4卡| 99久国产av精品国产电影| 又大又黄又爽视频免费| 80岁老熟妇乱子伦牲交| 日本av手机在线免费观看| 老司机影院毛片| 下体分泌物呈黄色| 91aial.com中文字幕在线观看| 久久久久久人妻| 亚洲精品色激情综合| 人妻 亚洲 视频|