• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Novel Systematic Method of Quality Monitoring and Prediction Based on FDA and Kernel Regression*

    2009-05-14 03:04:44ZHANGXi張曦MASile馬思樂YANWeiwu閻威武ZHAOXu趙旭andSHAOHuihe邵惠鶴
    關(guān)鍵詞:威武

    ZHANG Xi (張曦), MA Sile (馬思樂), YAN Weiwu (閻威武), ZHAO Xu (趙旭) and SHAO Huihe (邵惠鶴)

    ?

    A Novel Systematic Method of Quality Monitoring and Prediction Based on FDA and Kernel Regression*

    ZHANG Xi (張曦)1,2, MA Sile (馬思樂)3,**, YAN Weiwu (閻威武)2, ZHAO Xu (趙旭)2and SHAO Huihe (邵惠鶴)2

    1Guangdong Electric Power Research Institute, Guangzhou 510600, China2Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China3School of Control Science and Engineering, Shandong University, Jinan 250061, China

    A novel systematic quality monitoring and prediction method based on Fisher discriminant analysis (FDA) and kernel regression is proposed. The FDA method is first used for quality monitoring. If the process is under normal condition, then kernel regression is further used for quality prediction and estimation. If faults have occurred, the contribution plot in the fault feature direction is used for fault diagnosis. The proposed method can effectively detect the fault and has better ability to predict the response variables than principle component regression (PCR) and partial least squares (PLS). Application results to the industrial fluid catalytic cracking unit (FCCU) show the effectiveness of the proposed method.

    quality monitoring, quality prediction, Fisher discriminant analysis, kernel regression, fluid catalytic cracking unit

    1 Introduction

    It is difficult to measure online some important variables in chemical or biological process due to the limitation of the techniques. These variables are normally determined by offline analyses and calculation or online quality analyzer. Mostly, analysis and online analyzer suffer from long measurement delays or high investment and maintenance. Online estimation (soft sensing) techniques, which are developed recently, are now widely used. It predicts the product quality using the online measurable variables, which are correlated to the primary variable.

    Early work on online estimation assumed that a process model was available. Joseph and Brosilow [1]reported an inferential model developed using a Kalmanfilter [2]. In case the process mechanisms were not well understood, empirical models, such as neural network [3, 4], and multivariate statistical methods, such as principal component analysis (PCA) and partial least squares (PLS), were used to derive a regression model [2, 5-7]. In particular, PLS and its variations have been used to solve many practical regression problems in chemical engineering [6, 8]. Other methods include regression based on model [9] and hybrid methods also have been developed [10, 11]. Clustering has also been used for estimating a variable for which there is no online measurement in a distillation column [12].

    However, online process measurements are often contaminated with data points that deviate significantly from the true values due to instrument failure or changes in operating conditions. So, gross error detection is important in quality estimation. Several statistical methods have been presented, such as Global Test (GT) [13], the Nodal Test (NT) [13, 14], the Measurement Test (MT) [15], and the Generalized Likelihood Ratio (GLR) test to detect gross errors. The above-mentioned methods for errors detection must know the mathematical model of process and make necessary statistical assumption. For complex industrial processes, it is difficult to achieve an accurate mathematical model. These limit application of methods based on statistical test. Fisher discriminant analysis (FDA)-related methods are dimensional reduction techniques that have been widely used in the field of pattern classification [16]. They also have been introduced for fault detection and process monitoring in chemical industry [17-22]. Gross error is equal to faultsin systems. So, FDA is introduced for gross error detection in quality estimation and has a good performance.

    In this article, a systematic method of quality monitoring and prediction based on FDA and kernel regression has been proposed. FDA is first used for fault detection. If the process runs under normal condition, kernel regression method is then performed for quality prediction. Otherwise, the contribution plot of weights in fault feature direction is further used for fault diagnosis. Application results of the industrial fluid catalytic cracking unit (FCCU) show that the integrated method can effectively detect the happening faults and perform quality prediction and estimation.

    2 Preliminary principles of FDA and kernel regression

    2.1 Fisher discriminant analysis

    Fisher discriminant analysis (FDA) is a linear dimensional reduction technique widely used in the field of pattern classification [16]. Chiang. [20] used it first to diagnose faults in chemical process. The aim of FDA is to find the optimal Fisher discriminant vector such that the Fisher criterion function is maximized. The data in high-dimensional feature space then can be projected onto the obtained optimal discriminant vectors for constructing a lower-dimensional feature space [21]. The different class data can be separated mostly in the lower-dimensional Fisher space.

    The between-class-scatter matrix is defined as

    wherenis the number of observations in class. It can be concluded that the total-scatter matrix is equal to the sum of the between-class-scatter matrix and within-class-scatter matrix,

    The optimal discriminant vector can be found by maximizing the Fisher criterion function as follows:

    wherebandware the between-class scatter matrix and within-class scatter matrix. It is equipollent to solve the generalized feature equation as follows:

    2.2 Kernel principle component analysis

    Kernel principle component analysis (KPCA) is a nonlinear extension of PCA in kernel feature subspace. Consider a nonlinear mapping [23]:

    then the PC vectors can be denoted as follows.

    where

    2.3 Kernel principle component regression

    Consider the standard regression model in the feature space,

    then,

    Whereis an diagonal matrix of {1,2,···,λ},is an orthogonal matrix. So the linear regression model can be expressed further as,

    where

    is the new regressor in terms of kernel principal component and it satisfies that

    So the least square estimator of coefficientcan be expressed as

    From the above estimator expression, we can see that it is difficult to finddirectly. Below we show how to findusing the kernel function.

    Denotethe-th component ofandthe-th component of; from the linear regression model, we obtain

    So,

    where

    From above, we know that

    where

    From the definition of matrix,

    We can see that

    So

    3 Quality monitoring and prediction based on FDA and kernel regression

    3.1 The relationship among FDA, KPCA, and KPCR in quality monitoring and estimation

    Kernel principle component regression (KPCR) is the extension of KPCA. KPCA is used for feature selection. Then the extracted features can be used as preprocessing step for least square regression in the feature space. The framework of quality monitoring and estimation is shown in Fig. 1.

    It can be seen from the figure that data are first normalized using the mean and standard deviation of each variable. Then FDA is performed for gross error and fault detection. If the system runs under normal condition, KPCR is further used for quality estimation and prediction. Otherwise, contribution plot of weights in fault feature direction is used for fault diagnosis.

    FDA-related methods have been used for pattern matching and process monitoring. But it is introduced for the first time for gross error detection in quality estimation.

    3.2 The construction of detecting index and control limit

    Figure 1 Flow chart of quality monitoring and estimation

    For online quality monitoring, the distance of projection vectors in low-dimensional Fisher space,newcompares with the control limit*to determine whether a fault has occurred. The distance between feature vectors is defined as:

    A Quality monitoring based on FDA

    (3) Determine the control limit*from the normal data. The control limit is set to allow 99% of the total distances under the threshold.

    (6) Compare the distancenewwith the control limit*. Ifnewis less than the predefined threshold*, the current process feature is considered to represent the normal operating condition. Then use procedures B and C to perform quality prediction and estimation; if the fault has occurred, use step (7) for fault diagnosis.

    B Develop normal quality prediction and estimation model

    (1) Acquire the training data and normalize it using mean and standard deviation of each variable.

    where

    (4) Calculate the transformed regressor matrixas follows:

    (6) Calculate the predictions of training data as follows:

    C Online estimation and prediction procedure

    (1) Obtain new data and scale it with the mean and variance of each variable.

    (3) Mean centering of the test kernel matrix is as follows

    (4) Calculate the transformed regressor matrixas follows:

    4 Application studies and discussion

    4.1 Application results of the FCCU process

    Fluid catalytic cracking unit (FCCU) is the core unit of the oil secondary operation. Its operation conditions strongly affect the yield of light oil in petroleum refining. In general, FCCU consists of reactor- regenerator subsystem, fractionator subsystem, absorber-stabilizer subsystem and gas sweetening subsystem. The main aim of fractionator subsystem is to split reaction-cracked oil-gas according to a fractional distillation process. Prime products of fractionator subsystem include crude gasoline, light diesel oil, and slurry [7]. To control the product quality, the yield rate of gasoline is calculated offline every 8 hours. Significant delay (often several hours) will incur such that the measured values cannot be used as feedback signals for quality control systems. So it is necessary to estimate it online. However, when using online estimation, the results are often contaminated with data points that deviate significantly from the true values due to instrument failure or changes in operating conditions. So, it is essential to perform quality monitoring and avoiding wrong operations.

    The proposed method is applied to the quality monitoring and prediction of the yield rate of gasoline. The training and testing samples are collected from data of the distributed control system (DCS) and the corresponding daily laboratory analysis of Shijiazhuang Oil Refinery Factory, China. The input variables for quality monitoring and prediction are selected according to the principle that the variables which affected response variable most are selected first. Based on analysis to the process, it is found that the main variables which contribute to the yield rate of gasoline are flow rate of fresh oil, flow rate of reflux oil, temperature of catalytic reaction, overhead temperature of the main fractionating tower, the extraction temperature of light diesel oil, and bottom temperature of stabilizer column. Hence, these six variables are used as inputs for quality monitoring and prediction. Yield rate is used as the output of estimation model.

    We first collect two data sets and each includes 100 normal samples. They are used as training and testing data. The monitoring result using FDA is given in Fig. 2. We can see that no samples exceed the control limit when the system is normal. The monitoring results using PCA is shown in Fig. 3, it can be seen from the figure that there are a few samples exceed the 99% limit although the process is normal. The monitoring performance of FDA is better than PCA.

    Figure 2 Quality monitoring plot of normal data using FDA

    Figure 3 Quality monitoring plot of normal data using PCA

    Figure 4 Estimation results by KPCR (Normal data)

    Figure 6 Quality monitoring plot of fault data using FDA

    When the process is under normal condition, quality estimation can be further performed and appropriate kernel must be first chosen. The radial basis function (RBF) kernel is used as the selected kernel function andis 5.0 in this case.

    The prediction results using kernel regression are shown in Figs. 4 and 5. The upper part of Fig. 4 shows the actual and predicted values of training and testing data and the lower part shows the absolute error between actual and predicted values. Fig. 5 shows the predicted results by another method. In such plots, the data will fall on the diagonal (predicted values equal to actual values) if the model fits the data perfectly. It also shows the residual values of training and testing data. We can see from Fig. 4 that the KPCR model predicts the actual value with a relatively good accuracy. The absolute error is small. The same results can be seen in Fig. 5, in which the predicted values are plotted against observed data and the data shifts to a compact diagonal distribution on the plot. The prediction residuals are close to zero and have no significant outliers.

    The estimation performance can also be evaluated in terms of the root-mean-square-error (RMSE) criterion. The RMSE values for training and testing data of KPCR method in this case are 0.5112 and 0.5843, respectively. It also shows relatively good estimation results.

    Remark The RMSE index is defined as [28]:

    Figure 7 Contribution plot of weights in the feature direction

    Figure 8 Quality monitoring plot of fault data using PCA

    Figure 9 Estimation results by KPCR (Fault data)

    We then select a test data set of 100 samples including a fault of 10% decrease in the flow rate of fresh oil. The fault is introduced in sample 50 and persists to the end of the process. The PCA monitoring chart for the fault is shown in Fig. 8. It indicates that the square predicted error (SPE) statistic has a response to the fault happening; only a few samples delay. But it is not very clear. The corresponding FDA monitoring chart is shown in Fig. 6. In contrast to Fig. 8, we can see that the statistic distance increases drastically when the fault occurs at sample 50 and exceeds the 99% control limit. It also has better performance than PCA.

    After a fault has occurred, fault diagnosis is performed to identify the root cause. Fig. 7 is the contribution plot in the fault feature direction. It displays that variable 1 is primarily responsible for the fault deviation. Variable 1 corresponds to the flow rate of fresh oil. So the diagnosis result is right. The early detection and determination of the fault’s root cause will guide the operator to take correct action promptly, which could maintain the final product well.

    The prediction results of yield rate based on kernel regression are shown in Figs. 9 and 10. From Fig. 9, we can see that before the fault occurs, KPCR has good prediction results. But after that, the prediction results become worse. The absolute error is large and the prediction values far derivate from the actual values. The same results can be seen in Fig. 10. Before the fault is introduced, the data distribution is compactly towards the diagonal and the residual is low. But the test data distribution is scattered and the residuals are large after the fault happens. The total RMSE for the test data is 1.9824. If the faulty values are used as feedback signals in the control system, it will lead to wrong operations. So, quality monitoring is very important and necessary to guarantee the prediction results well.

    4.2 Further discussion

    The performance of the estimation method based on KPCR is influenced by many factors. We will use thesamples used in Section 4.1 to discuss them extensively.

    I Performance comparison of different methods

    To demonstrate the predominance of the proposed method, PCR and PLS are further applied, followed by a comparison with the KPCR prediction method. The estimation results using PCR and PLS are shown in Figs. 11-14.

    Figure 11 Estimation results by PCR

    Figure 13 Estimation results by PLS

    Figure 15 Estimation results with linear kernel

    From the figures, we can see that, compared with PCR and PLS, KPCR (shown in Figs. 4 and 5) has better estimation performance.

    Because KPCR is nonlinear modeling method, it has better prediction results. So it has a better ability to deal with nonlinear data. In this study, there are complex nonlinear relationships among input and response variables. So, projecting nonlinear input data onto a linear subspace by PCR or PLS cannot model the nonlinear relationships properly. In contrast, KPCR tries to model such nonlinear relationships preferably by a nonlinear kernel mapping into a feature space.

    II Performance influence of different kernels in KPCR

    When we estimate quality variables by KPCR, the choice of kernel is important. Different kernels have different influence on the performance of prediction. We use the linear kernel, polynomial kernel, and radial basis kernel for comparison, which are listed below.

    The KPCR model estimation results using linear and polynomial kernel (the parameteris chosen as 5.0)are shown in Figs. 15-18. It can be seen from the figures that using linear and polynomial kernels cannot obtain good estimation results compared to using radial basis kernel (shown in Figs. 4 and 5).

    The reason for this is that the input variables of the data set used are nonlinear correlated with each other and with the response variable. When linear and polynomial kernels are used, they cannot model the nonlinear correlation structure properly due to the risk of including noise in the model while trying to account nonlinearity. From our experience, radial basis kernel is more suitable for modeling such nonlinear relationships compared to other kernel functions by selecting appropriate parameter.

    III Performance influence of parameterin the RBF kernel

    Figures 19 and 20 present the estimation results of response variables for training and testing data with parameterequals to 0.01, 0.05, 0.5, 5, and 20. It can be seen from the figures that for training and testing data, whenis larger or smaller over a specific threshold, the estimation performance becomes worse. Therefore, to get good prediction results, the appropriate choice of parameteris important. In this case, whenis equal to 5.0, good estimation performance can be achieved. The same results can be obtained from the RMSE values of different c (shown in Table 1). Whenis equal to 5.0, the RMSE values are 0.5112 and 0.5843. They are the smallest among all the training and testing data.

    Figure 16 Estimation parity plot with linear kernel

    Figure 17 Estimation results with polynomial kernel

    Table 1 RMSE of different parameter c in kernel principal component regression (RBF kernel)

    5 Conclusions

    In this article, a systemic quality monitoring and prediction method based on FDA and kernel regression is proposed. The FDA monitoring method is first performed to detect process condition. If the process is normal, kernel regression is further used to do quality prediction and estimation. If fault has occurred, contribution plot of the weights in the feature direction is used for fault diagnosis. The improvement in prediction performance observed, from PCR, PLS to KPCR, suggests that nonlinear correlation structures should not be modeled using linear approaches due to the risk of including noise in the model while trying to account the nonlinearity. The application results of the industrial fluid catalytic cracking unit (FCCU) show the effectiveness of the proposed method.

    However, when the proposed method is used, how to choose kernel function and identify the kernel parameter is still an open problem. At present, we only solve this with our experience. How to settle this using a systematic approach is still a challenging issue. We believe that for the problem to be further solved, the proposed method will give more promising results.

    AcknowledgEments

    ..

    1 Joseph, B., Brosilow, C.B., “Inferential control of processes (1) Steady state analysis and design”,., 124, 485-508 (1978).

    2 Lin, B., Recke, B., Knudsen, J.K.H., J?rgensen, S.B, “A systematic approach for soft sensor development”,..., 31, 419-425 (2007).

    3 Qin, S.J., McAvoy, T.J., “Nonlinear PLS modeling using neural networks”,..., 16, 379-391 (1992).

    4 Radhakrishnan, V.R., Mohamed, A.R., “Neural networks for the identification and control of blast furnace hot metal quality”,., 10, 509-524 (2000).

    5 Kresta, J.V., Marlin, T.E., MacGregor, J.F., “Development of inferential process models using PLS”,..., 18, 597-611 (1994).

    6 Park, S., Han, C., “A nonlinear soft sensor based on multivariate smoothing procedure for quality estimation in distillation columns”,..., 24, 871-877 (2000).

    7 Yan, W., Shao, H., Wang, X., “Soft sensing modeling based on support vector machine and Bayesian model selection”,..., 28, 1489-1498 (2004).

    8 Skagerberg, B., MacGrgor, J.F., Kiprissides, C., “Multivariate data analysis applied to low-density polyethylene reactors”,...., 14, 341-356 (1992).

    9 Chen, S., Billings, S.A., Cowan, C.T.F., Grant, P.M., “Practical identification of NARMAX models using radial basis functions”,.., 52, 1327-1350 (1990).

    10 Ljung, L., System Identification: Theory for the User (Information and System Science Series), Prentice-Hall, New Jersey (1987).

    11 Wang, X., Luo, R., Shao, H., “Designing a soft sensor for a distillation column with the fuzzy distributed radial basis function neural network”, In: Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, Japan (1996).

    12 Espinoza, P. A., Gonzalez, G. D., Casali, A., Ardiles, C., “Design of soft sensors using cluster techniques”, In: Proceedings of International Mineral Processing Congress, San Francisco, USA (1995).

    13 Reilly, P., Carpani, R., “Application of statistical theory of adjustments to material Balances”, In: 13th Canadian Chemical Engineering Conference, Montreal, Canada (1963).

    14 Mah, R.S.H., Stanley, G., Downing, D., “Reconciliation and rectification of process flow and inventory data”,....., 15, 175-183 (1976).

    15 Mah, R.S.H., Tamhane, A.C., “Detection of gross errors in process data”,., 28, 828-830 (1982).

    16 Duda, R.O., Hart, P.E., Stork, D.G., “Pattern classification”, 2nd ed., Wiley, New York (2001).

    17 Cho, H.W., “Identification of contributing variables using kernel-based discriminant modeling and reconstruction”,.., 33, 274-285 (2007).

    18 Jemwa, G.T., Aldrich, C., “Kernel-based fault diagnosis on mineral processing plants”,.., 19, 1149-1162 (2006).

    19 Zhang, X., Zhao, X., Yan, W.W., Shao, H.H., “Nonlinear biological batch process monitoring and fault identification based on kernel fisher discriminant analysis”,., 42, 1200-1210 (2007).

    20 Chiang, L.H., Russell, E.L., Braatz, R.D., “Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis”,...., 50, 243-252 (2000).

    21 He, Q.P., Qin, S.J., “A new fault diagnosis method using fault directions in fisher discriminant analysis”,., 51, 555-571 (2005).

    22 Zhao, X., Yan, W., Shao, H., “Monitoring and fault diagnosis for batch process based on feature extract in Fisher subspace”,...., 14, 759-764 (2006).

    23 Sch?lkopf, B., Smola, A., Müller, K.R., “Nonlinear component analysis as a kernel eigenvalue problem”,., 10, 1299-1319 (1998).

    24 Lee, J.M., Yoo, C., Choi, S.W., Vanrolleghem, P.A., Lee, I.B., “Nonlinear process monitoring using kernel principal component analysis”,..., 59, 223-234 (2004).

    25 Rosipal, R., Girolami, M., Trejo, L. J., Cichocki, A., “Kernel PCA for feature extraction and de-noising in nonlinear regression”,.., 10, 231-243 (2001).

    26 Dachapak, C., Kanae, S., Yang, Z.J., Wada, K., “Kernel principal component regression in reproducing Hilbert space”,(.....), 34, 213-218 (2002).

    27 Chiang, L.H., Russell, E.L., Braatz, R.D., Fault Detection and Diagnosis in Industrial Systems, Springer, Hong Kong (2001).

    28 Lee, D.S., Lee, M.W., Woo, S.H., Kim, Y.J., Park, J.M., “Multivariate online monitoring of a full-scale biological anaerobic filter process using kernel-based algorithms”,...., 45, 4335-4344 (2006).

    29 Kim, K., Lee, J. M., Lee, I. B., “A novel multivariate regression approach based on kernel partial least squares with orthogonal signal correction”,...., 79, 22-30 (2005).

    30 Wold, S., “Cross-validatory estimation of components in factor and principal components models”,, 20, 397-405 (1978).

    2008-01-27,

    2008-11-05.

    the National Natural Science Foundation of China (60504033) and the Open Project of State Key Laboratory of Industrial Control Technology in Zhejiang University (0708004).

    ** To whom correspondence should be addressed. E-mail: masile@sdu.edu.cn

    猜你喜歡
    威武
    高傲的大公雞
    威武遼寧艦(一)
    山東艦,威武入列
    威武老槍56半
    威武的獅子
    幼兒畫刊(2018年4期)2018-04-11 03:58:56
    萌寵樂園
    威武大角羊
    威武蝦將軍
    小蝦威武
    威武的甲蟲
    欧美日韩乱码在线| 成人免费观看视频高清| cao死你这个sao货| av片东京热男人的天堂| 国产成人av激情在线播放| 黄色成人免费大全| 波多野结衣av一区二区av| 日本黄色日本黄色录像| 国产av又大| 国产成人欧美在线观看 | 成年人免费黄色播放视频| 最新的欧美精品一区二区| 国产男女内射视频| 色婷婷久久久亚洲欧美| 免费黄频网站在线观看国产| 国产精品一区二区在线观看99| 国产熟女午夜一区二区三区| 久久午夜综合久久蜜桃| 激情视频va一区二区三区| 国产xxxxx性猛交| 亚洲九九香蕉| 夜夜夜夜夜久久久久| 男男h啪啪无遮挡| 国产一区二区三区视频了| 久久精品国产清高在天天线| 青草久久国产| 我的亚洲天堂| 大型黄色视频在线免费观看| 大陆偷拍与自拍| 国产精品美女特级片免费视频播放器 | 国产欧美日韩一区二区三区在线| 亚洲精品美女久久av网站| 高清视频免费观看一区二区| 亚洲精品自拍成人| 淫妇啪啪啪对白视频| 亚洲中文字幕日韩| 另类亚洲欧美激情| 国产精华一区二区三区| av一本久久久久| 国产精品99久久99久久久不卡| av欧美777| 国产成人精品久久二区二区91| 国产单亲对白刺激| 国产乱人伦免费视频| 亚洲国产看品久久| 亚洲五月天丁香| 精品久久蜜臀av无| 成年人午夜在线观看视频| 啦啦啦免费观看视频1| 51午夜福利影视在线观看| 欧美黄色淫秽网站| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利视频在线观看免费| 少妇裸体淫交视频免费看高清 | 黑人猛操日本美女一级片| 激情在线观看视频在线高清 | xxxhd国产人妻xxx| 悠悠久久av| 一二三四社区在线视频社区8| 在线观看免费日韩欧美大片| 中文字幕av电影在线播放| 黄色 视频免费看| 黄色视频不卡| 国产区一区二久久| 两性午夜刺激爽爽歪歪视频在线观看 | 在线观看一区二区三区激情| 老鸭窝网址在线观看| 亚洲国产中文字幕在线视频| 亚洲中文字幕日韩| 亚洲熟妇熟女久久| 亚洲人成伊人成综合网2020| 岛国在线观看网站| 91麻豆精品激情在线观看国产 | 精品久久久久久久久久免费视频 | 国产在线一区二区三区精| 91成年电影在线观看| 麻豆国产av国片精品| 国精品久久久久久国模美| 欧美 日韩 精品 国产| 国产精品九九99| 国产欧美日韩综合在线一区二区| 国产成+人综合+亚洲专区| 久久久国产欧美日韩av| 啦啦啦 在线观看视频| 十八禁人妻一区二区| 亚洲国产中文字幕在线视频| 欧美不卡视频在线免费观看 | av免费在线观看网站| 女人被躁到高潮嗷嗷叫费观| 宅男免费午夜| av网站免费在线观看视频| 我的亚洲天堂| 国产成人免费无遮挡视频| 亚洲欧美激情在线| 精品一区二区三卡| 亚洲精品粉嫩美女一区| 久久性视频一级片| 美女扒开内裤让男人捅视频| 国产亚洲精品一区二区www | 99精品久久久久人妻精品| svipshipincom国产片| 热re99久久国产66热| 日韩中文字幕欧美一区二区| 国产男靠女视频免费网站| 深夜精品福利| 少妇裸体淫交视频免费看高清 | 大码成人一级视频| 午夜两性在线视频| 色94色欧美一区二区| 亚洲免费av在线视频| 老司机亚洲免费影院| 久久久精品免费免费高清| 午夜福利在线观看吧| 久久午夜综合久久蜜桃| 亚洲伊人色综图| 国产伦人伦偷精品视频| 欧美久久黑人一区二区| 亚洲av成人不卡在线观看播放网| 国产精品久久久久久人妻精品电影| 多毛熟女@视频| 一区二区三区激情视频| 成在线人永久免费视频| 国产精品 欧美亚洲| 黄网站色视频无遮挡免费观看| 国产精品二区激情视频| 两人在一起打扑克的视频| 免费日韩欧美在线观看| 人妻一区二区av| 日韩有码中文字幕| 亚洲国产精品合色在线| 老汉色av国产亚洲站长工具| 可以免费在线观看a视频的电影网站| 手机成人av网站| 91麻豆精品激情在线观看国产 | 中文字幕av电影在线播放| av中文乱码字幕在线| 18禁美女被吸乳视频| 国产精品永久免费网站| 亚洲av成人不卡在线观看播放网| 一夜夜www| 多毛熟女@视频| 国产精品久久久久久精品古装| 一个人免费在线观看的高清视频| 免费久久久久久久精品成人欧美视频| 一区二区三区激情视频| 天堂中文最新版在线下载| 免费在线观看亚洲国产| 国产1区2区3区精品| 精品人妻1区二区| 欧美激情 高清一区二区三区| 午夜福利在线观看吧| 免费观看精品视频网站| 国产一区在线观看成人免费| 久99久视频精品免费| 亚洲专区字幕在线| 国产精品免费一区二区三区在线 | 九色亚洲精品在线播放| 午夜福利免费观看在线| 久久久久精品国产欧美久久久| 国产一区二区三区视频了| 国产男女超爽视频在线观看| 成熟少妇高潮喷水视频| ponron亚洲| 国产精品av久久久久免费| 一级片'在线观看视频| 激情视频va一区二区三区| 国产一区二区三区在线臀色熟女 | 757午夜福利合集在线观看| 在线永久观看黄色视频| aaaaa片日本免费| 9热在线视频观看99| 1024香蕉在线观看| 久久精品国产99精品国产亚洲性色 | 嫁个100分男人电影在线观看| 日日夜夜操网爽| 国产一区有黄有色的免费视频| 99riav亚洲国产免费| 一级毛片高清免费大全| 亚洲视频免费观看视频| 中文字幕色久视频| 老熟妇仑乱视频hdxx| 亚洲av熟女| 黑人欧美特级aaaaaa片| tube8黄色片| 欧美日韩成人在线一区二区| netflix在线观看网站| 精品人妻在线不人妻| 一级作爱视频免费观看| 侵犯人妻中文字幕一二三四区| 亚洲熟妇熟女久久| 91麻豆av在线| 日韩免费av在线播放| 大型av网站在线播放| 久久国产精品人妻蜜桃| 国产一区有黄有色的免费视频| 男人的好看免费观看在线视频 | 久久精品国产a三级三级三级| 国产成人精品无人区| 淫妇啪啪啪对白视频| 免费黄频网站在线观看国产| 亚洲人成电影免费在线| 日韩欧美一区二区三区在线观看 | 一级黄色大片毛片| 他把我摸到了高潮在线观看| 亚洲一区高清亚洲精品| 日韩免费av在线播放| 亚洲aⅴ乱码一区二区在线播放 | 999精品在线视频| 国产亚洲精品久久久久5区| 制服人妻中文乱码| 人人妻,人人澡人人爽秒播| 中亚洲国语对白在线视频| 中文字幕高清在线视频| 亚洲久久久国产精品| 亚洲一区高清亚洲精品| 大型黄色视频在线免费观看| 成人手机av| 美国免费a级毛片| 欧美黄色片欧美黄色片| 很黄的视频免费| 91九色精品人成在线观看| 波多野结衣av一区二区av| 天天添夜夜摸| 久久国产精品人妻蜜桃| 国产主播在线观看一区二区| 亚洲免费av在线视频| 在线观看www视频免费| 久久中文字幕一级| 免费一级毛片在线播放高清视频 | 国产深夜福利视频在线观看| 欧美乱妇无乱码| 国产精品乱码一区二三区的特点 | 精品国产美女av久久久久小说| 黄色片一级片一级黄色片| 国产精品一区二区精品视频观看| 少妇裸体淫交视频免费看高清 | 好看av亚洲va欧美ⅴa在| 在线免费观看的www视频| 国产精品亚洲av一区麻豆| 婷婷成人精品国产| 最新的欧美精品一区二区| 国产成+人综合+亚洲专区| 日本精品一区二区三区蜜桃| 成人三级做爰电影| 午夜福利视频在线观看免费| 操出白浆在线播放| 在线观看www视频免费| 狠狠狠狠99中文字幕| 国产成人免费无遮挡视频| 亚洲视频免费观看视频| 日本一区二区免费在线视频| 国产精品久久久久成人av| 精品一品国产午夜福利视频| 高清毛片免费观看视频网站 | 欧美日韩亚洲国产一区二区在线观看 | 一进一出抽搐gif免费好疼 | 大型av网站在线播放| www.熟女人妻精品国产| 国产99白浆流出| 女人久久www免费人成看片| 三级毛片av免费| 王馨瑶露胸无遮挡在线观看| 久久国产乱子伦精品免费另类| 亚洲七黄色美女视频| 欧美人与性动交α欧美精品济南到| 国产日韩一区二区三区精品不卡| 麻豆成人av在线观看| 欧美激情 高清一区二区三区| 99riav亚洲国产免费| 国产精品一区二区免费欧美| 女同久久另类99精品国产91| 一本一本久久a久久精品综合妖精| 久久九九热精品免费| 国产日韩一区二区三区精品不卡| 国产亚洲一区二区精品| 五月开心婷婷网| 国产成人免费观看mmmm| 欧美不卡视频在线免费观看 | 麻豆av在线久日| 亚洲一区二区三区不卡视频| 久久久水蜜桃国产精品网| 夫妻午夜视频| 一区福利在线观看| 成熟少妇高潮喷水视频| 国产在线观看jvid| 亚洲成国产人片在线观看| 午夜精品国产一区二区电影| 欧美人与性动交α欧美精品济南到| 侵犯人妻中文字幕一二三四区| 天堂中文最新版在线下载| 色综合婷婷激情| 男女床上黄色一级片免费看| 欧美久久黑人一区二区| a级片在线免费高清观看视频| 大码成人一级视频| 国产成人系列免费观看| 国产成人免费观看mmmm| 新久久久久国产一级毛片| 久久久国产成人免费| 国产亚洲av高清不卡| 人成视频在线观看免费观看| 亚洲一区中文字幕在线| 久久99一区二区三区| 香蕉久久夜色| 亚洲九九香蕉| 亚洲一区二区三区不卡视频| 久久人妻福利社区极品人妻图片| 香蕉久久夜色| 香蕉丝袜av| 久久国产亚洲av麻豆专区| 欧美黄色片欧美黄色片| 中出人妻视频一区二区| 亚洲三区欧美一区| av欧美777| 国产免费男女视频| 亚洲,欧美精品.| 亚洲国产欧美一区二区综合| 久久国产亚洲av麻豆专区| 久久国产精品男人的天堂亚洲| 99精品久久久久人妻精品| 777久久人妻少妇嫩草av网站| 黄色视频不卡| 色综合欧美亚洲国产小说| 国产乱人伦免费视频| 欧美黄色片欧美黄色片| 俄罗斯特黄特色一大片| 一边摸一边抽搐一进一小说 | 1024香蕉在线观看| 久久性视频一级片| 成年人午夜在线观看视频| 国产精品一区二区在线观看99| 国产精品 欧美亚洲| 欧美成人午夜精品| 俄罗斯特黄特色一大片| 亚洲精品国产一区二区精华液| 亚洲国产精品合色在线| 精品人妻在线不人妻| 夜夜夜夜夜久久久久| 老熟女久久久| 99热网站在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久国产一级毛片高清牌| 欧美日韩瑟瑟在线播放| 国产亚洲精品久久久久5区| 韩国av一区二区三区四区| 亚洲av日韩精品久久久久久密| 国产99久久九九免费精品| 男女床上黄色一级片免费看| 脱女人内裤的视频| 国产精品九九99| 国产精品电影一区二区三区 | 国产亚洲精品一区二区www | 国产无遮挡羞羞视频在线观看| 最新的欧美精品一区二区| 色婷婷久久久亚洲欧美| 亚洲黑人精品在线| 麻豆成人av在线观看| 视频在线观看一区二区三区| 国产亚洲一区二区精品| 一区在线观看完整版| 婷婷成人精品国产| 女警被强在线播放| 亚洲伊人色综图| 精品一区二区三区四区五区乱码| 女人高潮潮喷娇喘18禁视频| 狂野欧美激情性xxxx| 亚洲欧美色中文字幕在线| 女人精品久久久久毛片| 色在线成人网| 久久久久视频综合| 亚洲片人在线观看| 亚洲精品国产色婷婷电影| 在线永久观看黄色视频| 黄片播放在线免费| 国产一区二区激情短视频| 久久 成人 亚洲| 亚洲精品美女久久av网站| 脱女人内裤的视频| 国产精品一区二区在线观看99| 丝袜美足系列| 欧美日韩乱码在线| 亚洲色图av天堂| 国产精品 国内视频| 成年版毛片免费区| 免费看十八禁软件| 国产精品久久久久久精品古装| 波多野结衣一区麻豆| 国产高清视频在线播放一区| 很黄的视频免费| 涩涩av久久男人的天堂| 精品久久蜜臀av无| 一区二区日韩欧美中文字幕| 国产高清国产精品国产三级| 精品人妻熟女毛片av久久网站| 91大片在线观看| 高清视频免费观看一区二区| 少妇猛男粗大的猛烈进出视频| 久久久国产精品麻豆| 黑人操中国人逼视频| 国产有黄有色有爽视频| 女性被躁到高潮视频| a级毛片在线看网站| 麻豆乱淫一区二区| 中文字幕人妻熟女乱码| 女人高潮潮喷娇喘18禁视频| 人妻久久中文字幕网| 国产精品久久久av美女十八| 亚洲国产中文字幕在线视频| 黄片小视频在线播放| 怎么达到女性高潮| 亚洲人成77777在线视频| 黑人操中国人逼视频| 免费女性裸体啪啪无遮挡网站| 亚洲国产精品合色在线| 日韩大码丰满熟妇| 12—13女人毛片做爰片一| 热99re8久久精品国产| 乱人伦中国视频| 亚洲成国产人片在线观看| 久久狼人影院| 亚洲情色 制服丝袜| 国产欧美亚洲国产| 国产成+人综合+亚洲专区| 国产成人精品久久二区二区91| 黄色成人免费大全| av超薄肉色丝袜交足视频| av电影中文网址| 人人妻人人澡人人爽人人夜夜| 亚洲欧美日韩高清在线视频| avwww免费| 91麻豆av在线| www.自偷自拍.com| 男人操女人黄网站| 老司机在亚洲福利影院| 男女之事视频高清在线观看| 日日夜夜操网爽| 中文欧美无线码| 岛国在线观看网站| 桃红色精品国产亚洲av| 亚洲 国产 在线| 首页视频小说图片口味搜索| 80岁老熟妇乱子伦牲交| 看免费av毛片| 丝袜美腿诱惑在线| 一级a爱视频在线免费观看| 99riav亚洲国产免费| 黄色 视频免费看| 很黄的视频免费| 国产真人三级小视频在线观看| av一本久久久久| 一二三四社区在线视频社区8| 国产成人精品久久二区二区免费| 国产成人精品久久二区二区91| 国产亚洲av高清不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜福利视频在线观看免费| 亚洲精品国产色婷婷电影| 国产一区二区三区综合在线观看| 亚洲一区二区三区不卡视频| 一级,二级,三级黄色视频| 身体一侧抽搐| e午夜精品久久久久久久| 国产淫语在线视频| 黑人欧美特级aaaaaa片| 亚洲,欧美精品.| 国内久久婷婷六月综合欲色啪| 日韩欧美三级三区| 一级毛片高清免费大全| 国产三级黄色录像| 丁香六月欧美| 免费女性裸体啪啪无遮挡网站| 久热爱精品视频在线9| 久久久国产成人免费| 男女午夜视频在线观看| 日韩欧美在线二视频 | 亚洲av成人一区二区三| 欧美精品人与动牲交sv欧美| 悠悠久久av| av片东京热男人的天堂| 在线永久观看黄色视频| 91精品国产国语对白视频| 欧美激情高清一区二区三区| 久久国产精品影院| 亚洲人成电影免费在线| 国产一区在线观看成人免费| 我的亚洲天堂| 国产亚洲精品久久久久5区| 侵犯人妻中文字幕一二三四区| 中文字幕人妻熟女乱码| 国产xxxxx性猛交| 久久人人爽av亚洲精品天堂| 国产精品自产拍在线观看55亚洲 | 麻豆国产av国片精品| 色在线成人网| 国产日韩一区二区三区精品不卡| 国产精品自产拍在线观看55亚洲 | av福利片在线| 美女午夜性视频免费| 91老司机精品| 99精国产麻豆久久婷婷| 黑人巨大精品欧美一区二区mp4| 99精品久久久久人妻精品| 在线观看一区二区三区激情| 精品一区二区三区av网在线观看| 日韩欧美免费精品| 久久香蕉精品热| 免费在线观看亚洲国产| 他把我摸到了高潮在线观看| 午夜日韩欧美国产| 1024视频免费在线观看| 韩国精品一区二区三区| 色尼玛亚洲综合影院| 女人久久www免费人成看片| 欧美激情久久久久久爽电影 | 久久久久久久久久久久大奶| 日韩免费av在线播放| 校园春色视频在线观看| 亚洲精品国产精品久久久不卡| 不卡av一区二区三区| 久久九九热精品免费| 波多野结衣av一区二区av| 精品第一国产精品| 丝袜美腿诱惑在线| 一区二区三区激情视频| 国产精品亚洲av一区麻豆| 欧美激情 高清一区二区三区| 91在线观看av| 超色免费av| 新久久久久国产一级毛片| 国产高清国产精品国产三级| 99精国产麻豆久久婷婷| 一区二区三区激情视频| 久久久国产成人精品二区 | 国产精品成人在线| 久久国产乱子伦精品免费另类| 欧美久久黑人一区二区| 欧美日韩乱码在线| 亚洲精品中文字幕在线视频| 婷婷丁香在线五月| 国产欧美日韩精品亚洲av| 热99国产精品久久久久久7| 欧美日韩视频精品一区| 精品国产一区二区三区四区第35| 国产精品 欧美亚洲| 99在线人妻在线中文字幕 | 国产av又大| 亚洲少妇的诱惑av| 久久国产精品人妻蜜桃| 狠狠婷婷综合久久久久久88av| 激情视频va一区二区三区| 女人被狂操c到高潮| 一本一本久久a久久精品综合妖精| 亚洲精品av麻豆狂野| 久久国产精品大桥未久av| 亚洲欧美日韩高清在线视频| 水蜜桃什么品种好| 电影成人av| 下体分泌物呈黄色| 最新的欧美精品一区二区| 999精品在线视频| 日本一区二区免费在线视频| 纯流量卡能插随身wifi吗| 精品熟女少妇八av免费久了| 婷婷成人精品国产| 国产国语露脸激情在线看| 精品久久久久久,| 欧洲精品卡2卡3卡4卡5卡区| 99精品欧美一区二区三区四区| 一级毛片高清免费大全| 国产精品自产拍在线观看55亚洲 | 国产蜜桃级精品一区二区三区 | 波多野结衣av一区二区av| 国产精品欧美亚洲77777| 久久久久精品人妻al黑| 91九色精品人成在线观看| 老鸭窝网址在线观看| 亚洲五月色婷婷综合| 日韩大码丰满熟妇| 国产99白浆流出| 日韩有码中文字幕| av天堂在线播放| 国产精品 欧美亚洲| 啦啦啦 在线观看视频| 欧美性长视频在线观看| 超色免费av| 精品人妻1区二区| 伦理电影免费视频| 国产一区二区三区综合在线观看| 看片在线看免费视频| 亚洲九九香蕉| 老司机在亚洲福利影院| 丝袜人妻中文字幕| www.自偷自拍.com| 法律面前人人平等表现在哪些方面| 久久久久精品人妻al黑| 老司机深夜福利视频在线观看| 国产精华一区二区三区| 欧美 日韩 精品 国产| 国产成人欧美在线观看 | 正在播放国产对白刺激| 捣出白浆h1v1| 亚洲自偷自拍图片 自拍| 国产精华一区二区三区| 亚洲成人免费av在线播放| 国产人伦9x9x在线观看| 19禁男女啪啪无遮挡网站| 香蕉久久夜色| 久久人妻熟女aⅴ| 久久久久久免费高清国产稀缺| 夜夜夜夜夜久久久久| 国产不卡av网站在线观看| 亚洲色图综合在线观看| 国产av精品麻豆| 老司机在亚洲福利影院| 欧美人与性动交α欧美精品济南到|