• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pervaporation of Aqueous Solution of Acetaldehyde Through ZSM-5 Filled PDMS Composite Membrane*

    2012-02-14 08:26:24WUYanhui伍艷輝TANHuifen譚惠芬LIDongming李佟茗andJINYuan金源
    關(guān)鍵詞:金源

    WU Yanhui (伍艷輝)**, TAN Huifen (譚惠芬), LI Dongming (李佟茗) and JIN Yuan (金源)

    Department of Chemistry, Tongji University, Shanghai 200092, China

    1 INTRODUCTION

    Acetaldehyde is one of the most important chemical intermediates in chemical industry. It can be used to synthesize butanol, acetone, acetic anhydride,trichloroacetaldehyde and so on. Several traditional processes, such as acetylene hydration and ethane oxidization, have been used to produce acetaldehyde, generating acetaldehyde waste water that is toxic and hazardous to the environment and creatures. Thus the treatment of acetaldehyde waste water becomes urgent [1, 2].

    Several methods are used to treat acetaldehyde waste water such as distillation [3-5], adsorption [6] and condensation [7]. In addition, pervaporation, a novel and effective membrane technique, is suitable for separating organics from its dilute aqueous solution [8, 9].Due to its simplicity, high permselectivity, energy and cost saving, pervaporation technique presents enormous potentiality in water treatment. For example, toluene was removed from the wastewaters of chemical industry with unfilled and carbon black filled polydimethylsiloxane (PDMS) membranes, with the removal of toluene amounted to 90% and 93% for PDMS +carbon black and PDMS, respectively [10]. Similarly,Peng et al. [11] obtained extremely high separation factor and acceptable permeation flux for removal of toxic volatile compound benzene from aqueous solution with carbon molecular sieve filled PDMS membranes. The processes coupled with pervaporation of acetaldehyde were also investigated. Papaefstathiou et al. [12] separated acetaldehyde with polytetrafluoroethylene (PTFE) membrane from 2% (by volume)aqueous solution of acetaldehyde by pervaporation and determined acetaldehyde by combining enzymic method. Gas chromatograph [13] and capillary electrophoresis [14] coupled with pervaporation pretreatment were applied to detect acetaldehyde and acetone successfully. Zeng and Zeng [15] separated the flavoring compositions in a new Chinese spirits by pervaporation with PDMS membrane at 40 °C and the removal efficiency of acetaldehyde reached 87% for the feed with 0.2 mg·ml-1acetaldehyde. In order to enhance the permeation flux and selectivity of acetaldehyde,more suitable membrane needs to be developed.

    PDMS is a commonly used hydrophobic polymeric material for separating minor organic compounds from aqueous solution. The rapid motion of chain segments in PDMS leads to a large free volume that favors the diffusion of the permeating molecules.In recent years, some effective methods such as filling adsorbents into the polymers have been used to improve the permeation flux or selectivity. High-silica ZSM-5 zeolite filled PDMS composite membrane was applied to recover isopropanol from its aqueous solution [16]. With the increase of zeolite content in the mixed matrix membrane, the permeation flux and selectivity increased simultaneously.

    In this work, considering that the high-silica ZSM-5 zeolite can improve the hydrophobicity and enhance the mechanical property of the composite membrane as mentioned in literature [16, 17], we prepare ZSM-5 zeolite filled PDMS composite membranes with Nylon microfiltration membrane as the support layer and use them to remove acetaldehyde from its aqueous solution by pervaporation. The chemical and physical properties of the composite membrane are characterized.The effects of ZSM-5 zeolite content and pervaporation operation conditions on pervaporation performance are investigated.

    2 EXPERIMENTAL

    2.1 Materials

    107-silicone rubber (viscosity 5 Pa·s), tetraethylorthosilicate (TEOS) and dibutyltin dilaurate were obtained from Shanghai Resin Company. ZSM-5 zeolite (H type, Si/Al=360) with particle size of 3.5 μm was purchased from Shanghai Fuxu Molecular Sieve Limited Company. Ethyl acetate with analytical pure grade was supplied by Sinopharm Chemical Reagent Co., Ltd. Acetaldehyde was prepared from the depolymerization of paraldehyde (chemical pure grade, Aladdin Reagent Database Inc.) with concentrated sulfuric acid as the catalyst and then was used to make the acetaldehyde solution. The Nylon microfiltration membrane(pore diameter 0.45 μm) was bought from Shanghai Mosu Tech. Co., Ltd.

    2.2 Membrane preparation

    ZSM-5 zeolite was weighed and roasted in muffle furnace at 400°C for 5 h to remove the water and carbon dioxide adsorbed. The pretreated zeolite was then cooled to room temperature in a desiccator. 5 g of 107-silicone rubber was added into ethyl acetate with stirring until the silicone rubber dissolved completely.The pretreated zeolite was added into ethyl acetate with ultrasonic dispersion for 30 min. The two mixtures were mixed with crosslinking agent TEOS and catalyst dibutyltin dilaurate, stirred for 1 h. The prepared casting solution was toppled on a Nylon membrane supported on a glass plate (the Nylon membrane was saturated with distilled water beforehand). Then the solution was cast with a glass scraper. The composite membrane was dried at 60°C for 12 h and peeled off from the glass plate when the solvent evaporated completely.

    2.3 Membrane characterization

    X-ray powder diffraction (XRD, D8FOUCUS,Bruker AXS) was used to examine the crystalline diffraction characteristics of the PDMS, ZSM-5 and ZSM-5-PDMS samples. The radiation was generated using Cu Kα(λ=0.154 nm) from graphite monochromator at 40 kV and 100 mA. The scanning rate was 2(°)·min-1and the scanning range was 10°-70°.

    The diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments were carried out on a Bruker Vector 22 FTIR spectrometer equipped with a MCT detector and Harrick diffuse reflectance accessory. All infrared data were evaluated in Kubelka-Munk units. Background signals from gas-phase were subtracted before the spectra were reported.

    SEM 515 scanning electron microscopy (Phillip Corp.) was used to observe the surface and cross-section morphologies of the membranes.

    The thermal stability of the membranes was measured by thermogravimetric analyzer (Q600SDT,TA Instrument Inc.) at a heating rate of 10 K·min-1in nitrogen atmosphere.

    2.4 Swelling study

    The dried ZSM-5-PDMS membrane was weighed and immersed in aqueous solution of acetaldehyde at 25 °C. Then the membrane sample was taken out at intervals and wiped carefully with filter paper to remove the liquid on the surface. After weighed, the sample was put back into the acetaldehyde aqueous solution again until its mass was unchanged. The degree of swelling (DS) was determined by

    where Wsand Wdare the mass of swollen and dry membranes, respectively.

    2.5 Pervaporation measurement

    The schematic diagram of the experimental equipment for pervaporation is shown in Fig. 1. The acetaldehyde aqueous solution in liquid reservoir was sent to the membrane cell by a recycle pump. With the vapor pressure difference over the membrane, part of the feed liquid permeated through the membrane and evaporated in vacuum environment. The permeate was condensed and collected in a liquid nitrogen cold trap and the retentive feed liquid was circulated back to the liquid reservoir. The feed temperature was controlled by the temperature-controller and the feed flux was measured by a rotameter. The temperatures at the entrance and exit of the membrane cell were measured by the thermocouples. The effective membrane area was 3.6×10-3m2. The permeate mass was obtained by weighing the collector.

    The concentrations of permeate and feed liquid were measured by gas chromatography (GC7890F,TECHCOMP [HOLDINGS) LIMITED]. The column was HP-FFAP capillary column. The pervaporation performance is usually described with separation factor α and permeation flux J,

    where Pwaterand Pacetaare mass fractions of water and acetaldehyde in permeate, respectively; Fwaterand Facetaare mass fractions of water and acetaldehyde in liquid feed, respectively; J is the permeation flux, g·m-2·h-1;W is the mass of the permeate, g; A is the effective membrane area, m2; and t is the permeation time, h.

    Figure 1 Schematic diagram of the pervaporation (PV) equipment1—temperature control unit; 2—liquid reservoir; 3—level gauge; 4—liquid pump; 5—rotameter; 6—membrane cell; 7—cold trap;8—pressure sensor; 9—dryer; 10—vacuum buffer; 11—vacuum pump

    3 RESULTS AND DISCUSSION

    3.1 Membrane characterization

    3.1.1Fourier transform-infrared (FT-IR) analysis

    The FT-IR spectra of PDMS/Nylon and 5%ZSM-5-PDMS/Nylon membranes are displayed in Fig. 2,which seem very similar. A stretching vibration band of C H appears at 2962 cm-1and a stretching vibration band of SiC is at 1260 cm-1. 1000-1150 cm-1is the characteristic absorption band of SiO Si. 800 cm-1is the stretching vibration band of SiC. In 5%ZSM-5-PDMS/Nylon membrane, the characteristic absorption band of SiO Si is much weaker than that in PDMS/Nylon membrane. There are two reasons accounting for this: incorporation of ZSM-5 zeolite may destroy the crosslinking of PDMS and TEOS,and OH in ZSM-5 zeolite forms hydrogen bond with O in SiO Si.

    Figure 2 FT-IR spectra of PDMS/Nylon and ZSM-5-PDMS/Nylon samplesPDMS/Nylon; 5%ZSM-5-PDMS/Nylon

    3.1.2XRD analysis

    Figure 3 XRD patterns for ZSM-5 zeolite, PDMS/Nylon membrane and 5%ZSM-5-PDMS/Nylon membrane

    The XRD patterns of ZSM-5 zeolite, PDMS/Nylon and 5%ZSM-5-PDMS/Nylon samples are shown in Fig. 3. The characteristic diffraction peaks of ZSM-5 zeolite are at 8.0°, 8.9°, 23.1°, 23.3° and 24.0° [18].Comparing Fig. 3 (b) with Fig. 3 (c), we can see the characteristic diffraction peak of PDMS at 11.8° and diffraction peaks ranged from 23° to 24° in 5%ZSM-5-PDMS/Nylon sample. This demonstrates that the addition of ZSM-5 zeolite does not change the state of PDMS. The XRD pattern of ZSM-5-PDMS/Nylon composite membrane is the superposition of ZSM-5 zeolite and PDMS/Nylon samples.

    3.1.3Thermogravimetric analysis

    The thermogravimetric curves of PDMS and 5%ZSM-5-PDMS/Nylon samples are shown in Fig. 4.The two samples begin to decompose at about 200 °C and decompose completely at about 700 °C, because PDMS polymer is at rubbery state and the internal structure changes a lot as temperature increases. At about 350 °C the crosslinking structure is destroyed.

    Figure 4 TG analysis curves of PDMS and ZSM-5-PDMS samplesPDMS/Nylon; 5%ZSM-5-PDMS/Nylon

    Figure 5 SEM images of PDMS/Nylon and ZSM-5-PDMS/Nylon membranes

    The analysis of FT-IR shows that incorporation of ZSM-5 would influence the crosslinking of PDMS.Therefore, the weight loss of the zeolite filled membrane from 350 to 450 °C is higher than that of the unfilled membrane. In the whole decomposing process,since zeolite is an inorganic particle, the mass loss of zeolite filled membrane is less.

    3.1.4Scanning electron microscope (SEM) analysisFigures 5 and 6 show the SEM images of PDMS/Nylon, 5%ZSM-5-PDMS/Nylon and 15%ZSM-5-PDMS/Nylon membranes. The composite membrane filled with 15% ZSM-5 zeolite is very different from the unfilled membrane (Fig. 5). The PDMS dense layer of unfilled membrane is more homogeneous. The surface layer structure of ZSM-5 filled PDMS membranes with different ZSM-5 mass contents (Fig. 6) shows that the zeolite particles distribute uniformly in 5%ZSM-5-PDMS/Nylon membrane while agglomerate in 15%ZSM-5-PDMS/Nylon membrane. In the study of Sunet al. [19], zeolite ZSM-5 began to agglomerate at mass content of 10%.

    3.2 Swelling and sorption properties of composite membrane

    Figure 7 shows the swelling behavior of composite membranes in 8% aqueous solution of acetaldehyde at 25 °C. Compared with the PDMS/Nylon membrane, the zeolite filled membrane has lower DS value and takes shorter time to reach swelling equilibrium. The addition of zeolite is helpful to avoid the excessive swelling [20].

    Figure 6 SEM images of the surface layer of ZSM-5-PDMS/Nylon membranes

    Figure 7 Swelling curves of ZSM-5-PDMS/Nylon membrane at different times (8% acetaldehyde, 25°C)■ PDMS/Nylon; ● 2%ZSM-5-PDMS/Nylon;▲ 5%ZSM-5-PDMS/Nylon; ▼ 8%ZSM-5-PDMS/Nylon;◆ 15%ZSM-5-PDMS/Nylon

    In swelling process, there are three steps in succession: (1) solvent molecules diffuse into the polymer system, (2) the polymer chains become relaxed, and (3)the polymer network expands in the solution. If step 1 is dominant, the amount of solvent adsorption will be directly proportional to the square root of time. If step 2 is rate-determining, the amount of adsorbed solvent is proportional to time,while the swelling degreevs.the square root of time exhibits sigmoidal pattern [21].In Fig. 7, the swelling degree curve of PDMS/Nylon membranes is sigmoidal, which means that the relaxation of polymer chains is the rate-determining step.For the ZSM-5 filled PDMS/Nylon membrane, the swelling degree looks more likely linear with the square root of time. The filled zeolite ZSM-5 influences the swelling process.

    Hydrophobic ZSM-5 zeolite adsorbs acetaldehyde more easily than water, so the zeolite in the composite membrane has preferential sorption to acetaldehyde. Fig. 8 shows that the DS values of membranes in pure water and in acetaldehyde solution have similar trend as zeolite content increases in the membrane. And in the whole range, the DS value in water is lower than that in acetaldehyde solution.

    Figure 8 Effect of zeolite content on DS (25°C)■ in 8% acetaldehyde; ▲ in water

    The membrane without filling zeolite has the highest DS in acetaldehyde solution and in water. The reason is that pure PDMS is a kind of rubbery polymer at ambient temperature [22, 23], so the active movement of PDMS segments makes its free volume relatively large [24]. After filling with ZSM-5 zeolite,the free volume of PDMS is partly inhabited by zeolite. Moreover, as a kind of inorganic filler, ZSM-5 zeolite is inflexible, which restricts the segment movement in PDMS-ZSM-5/Nylon membrane to some extent and therefore suppresses the swelling of the composite membrane.

    Since ZSM-5 zeolite can improve the sorption of acetaldehyde but suppress the swelling of membrane,the DS of the composite membrane first increases and then decreases with increasing zeolite content (Fig. 8).When zeolite mass content exceeds 8%, the segment movement of PDMS in the composite membrane is weakened and the swelling suppression effect is dominant. Therefore, the quantity of adsorbed acetaldehyde solution is small in 15%ZSM-5-PDMS/Nylon membrane.

    3.3 Pervaporation performance of composite membrane

    3.3.1Effect of zeolite content

    The effect of ZSM-5 zeolite content on selectivity of ZSM-5 filled PDMS composite membrane in 8% (by mass) acetaldehyde solution is shown in Fig. 9.The separation factor increases with zeolite mass content first and achieves the maximum value 35 at 5% zeolite content. The separation factor of 8%ZSM-5-PDMS/Nylon membrane is close to that of the membrane with 5%ZSM-5 content, both of which show better adsorption to acetaldehyde (Fig. 8). As the zeolite mass content increases to 15%, the smaller value of DS (Fig. 8)causes less adsorption of acetaldehyde molecules on the membrane, lowering the separation factor considerably. On the whole, the separation factor of ZSM-5 filled membranes is much better than that of the unfilled membrane.

    Figure 9 Effect of zeolite content on separation factor (8%acetaldehyde, 50 L·h-1, 25 °C)

    The effect of zeolite content on permeation flux in 8% acetaldehyde solution at 50 L·h-1flow rate and 25 °C is shown in Fig. 10. The unfilled PDMS/Nylon membrane gives the maximum permeation flux (309.4 g·m-2·h-1), because the unfilled membrane has the highest DS in the aqueous solution of acetaldehyde,providing more free volume for the sorption and diffusion of acetaldehyde and water molecules. The zeolite filled membranes has lower permeation flux than the unfilled membrane as the zeolite suppresses membrane swelling and decreases the free volume of the composite membrane. As the zeolite loading increases,the sorption capacity of acetaldehyde increases while the sorption of water shows opposite trend. Since the DS of the composite membrane increases as zeolite mass content increases from 2% to 5%, the permeation flux of 5%ZSM-5-PDMS/Nylon membrane is higher than that of 2%ZSM-5-PDMS/Nylon membrane. However, further increase of zeolite content may lead to the aggregation of zeolite, so that the movement of segments decreases and the transport resistance of the filled membrane is increased [11]. Therefore, the permeation fluxes of 8%ZSM-5-PDMS-Nylon and 15%ZSM-5-PDMS-Nylon membranes are less. This phenomenon is in agreement with that in a previous pervaporation experiment with silicalite-filled polyether-block-amides membrane [20].

    Figure 10 Effect of zeolite content on permeation flux (8%acetaldehyde, 50 L·h-1, 25 °C)

    3.3.2Effect of feed concentration

    The swelling of membrane has some relation with the concentration of acetaldehyde in the feed, so the feed concentration influences the membrane performance. As shown in Fig. 11, the total permeation flux of 5%ZSM-5-PDMS/Nylon membrane increases with the feed concentration. The reason is that PDMS and zeolite ZSM-5 are both hydrophobic, the DS of the composite membrane in acetaldehyde solution increases with its concentration. The interactions between PDMS polymer chains will be weakened when the DS is higher, enlarging the free volume of composite membrane. Then it is favorable for molecules to permeate through the membrane, increasing the total permeation flux. Fig. 12 shows the partial permeation flux of acetaldehyde and water at different feed concentrations. Although water molecule is smaller than acetaldehyde molecule, the water flux is lower than the acetaldehyde flux in this work since the composite membrane has preferential sorption to acetaldehyde.As the acetaldehyde concentration increases, the acetaldehyde flux increases, while the water flux decreases slightly. Similar tendency of partial permeation flux can be found in literature [11, 25, 26]. Higher acetaldehyde concentration in the membrane may hinder the diffusion of water through membrane.

    Figure 11 Effect of feed concentration on total permeation flux (5%ZSM-5-PDMS/Nylon, 25 °C, 50 L·h-1)

    Figure 12 Effect of feed concentration on partial permeation flux (5%ZSM-5-PDMS/Nylon, 25 °C, 50 L·h-1)■ acetaldehyde; ▲ water

    Figure 13 shows that the separation factor for 5%ZSM-5-PDMS/Nylon membrane also increases with feed concentration. The more acetaldehyde molecules adsorb on membrane surface, the more easily acetaldehyde permeates through the membrane. When the acetaldehyde concentration is higher, the sorption and solution of acetaldehyde in the membrane are improved, enhancing the permselectivity.

    Figure 13 Effect of feed concentration on separation factor (5%ZSM-5-PDMS/Nylon, 25 °C, 50 L·h-1)

    3.3.3Effect of operating temperature

    The vapor pressure increases with upstream temperature, increasing the driving force of the pervaporation process. Furthermore, since PDMS is an amorphous rubbery polymer, the segments of PDMS can move more frequently at higher temperatures. The free volume of ZSM-5-PDMS/Nylon membrane is enlarged,so that the solution and diffusion of the preferentially adsorbed acetaldehyde are improved. The partial flux of acetaldehyde increases evidently with temperature but the water flux changes little (Fig. 14). Thus the separation factor increases with temperature (Fig. 15).The total permeation flux also increases with temperature, as shown in Fig. 16. For 5%ZSM-5-PDMS/Nylon membrane, the highest total flux obtained is more than 400 g·m-2·h-1at 45 °C and the separation factor can reach 50.

    Figure 14 Effect of liquid temperature on partial permeation flux (5%ZSM-5-PDMS/Nylon, 8% acetaldehyde, 50 L·h-1)■ acetaldehyde; ▲ water

    Figure 15 Effect of liquid temperature on separation factor(5%ZSM-5-PDMS/Nylon, 8% acetaldehyde, 50 L·h-1)

    4 CONCLUSIONS

    In this study, we prepared zeolite ZSM-5 filled PDMS composite membranes. FT-IR analysis demonstrates that the filling of ZSM-5 zeolite may destroy the crosslinking of PDMS and form hydrogen bond with oxygen in PDMS chains. The SEM analysis shows that the zeolite distributes well in PDMS when the zeolite content is proper. The DS of ZSM-5 filled PDMS/Nylon membrane is lower than that of the unfilled membrane.

    Figure 16 Effect of liquid temperature on total permeation flux (5%ZSM-5-PDMS/Nylon, 8% acetaldehyde, 50 L·h-1)

    The prepared ZSM-5 filled PDMS/Nylon membranes were used to pervaporate acetaldehyde from its aqueous solution. The membrane incorporated with 5% zeolite presents the best separation characteristics.The separation selectivity is 35 with permeation flux of 233.3 g·m-2·h-1at 25 °C for 8% acetaldehyde mass concentration in the feed. Both separation factor and permeation flux increase with the feed concentration.At higher temperature, the driving force for the pervaporation process increases and the motion of polymer chains is accelerated, so that the free volume of membrane is enlarged, improving the solution and diffusion of acetaldehyde in the membrane. As a result,the separation factor and permeation flux of the composite membrane increase with temperature.

    1 Zhang, X.C., Li, S.Y., Brown, R.A., Ren, J., “Ethanol and acetaldehyde in alcoholic cardiomyopathy: from bad to ugly en route to oxidative stress”,Alcohol, 32, 175-186 (2004).

    2 Vaca, C.E., Fang, J.L., Schweda, E.K.H., “Studies of the reaction of acetaldehyde with deoxynucleosides”,Chem.Biol.Interact., 98,51-67 (1995).

    3 Jiang, L., Lei, L.H., “Research on one-step method for synthesis of ethyl acetate separation technology”,Mod.Chem.Ind., 11, 32-33(1996). (in Chinese)

    4 Chen, Z., Wu, G., Zhu, P., Hu, X., Shen, X., Li, J. X., Liu, X., “Metaldehyde production process”, CN Pat., 1150590 (1997). (in Chinese)

    5 Chen, L., Zhang, N., “Pressure distillation for energy conservation in acetaldehyde production”,Mod.Chem.Ind., 3, 20-22 (1995). (in Chinese)

    6 Mueller, U., Weiss, R., Diehl, K., Sandrick, G., Sauvage, L., “Separation of acetaldehyde from hydrocarbons using zeolites”, Germany Pat., 4226302 (1994).

    7 Lü, X., Jing, Q., “Successive condensation of benzaldehyde and acetaldehyde for preparing cinnamaldehyde in near-critical water with ammonia as catalyst”, CN Pat., 1837171 (2008). (in Chinese)

    8 Wu, Y., Huang, W.X., Xiao, Z.Y., Zhong, Y.H., “Ethanol recovery from fermentation broth by pervaporation using a composite polydimethylsiloxane”,Chin.J.Chem.Eng., 12, 586-589 (2004).

    9 Peng, F.B., Jiang, Z.Y., “Modeling of pervaporation separation benzene from dilute aqueous solutions through polydimethylsiloxane membranes”,Chin.J.Chem.Eng., 13, 343-349 (2005).

    10 Panek, D., Konieczny, K., “Pervaporative separation of toluene from wastewaters by use of filled and unfilled poly(dimethylosiloxane)(PDMS)membranes”, Desalination, 241, 197-200 (2009).

    11 Peng, F.B., Jiang, Z.Y., Hu, C.L., Wang, Y.Q., Xu, H.Q., Liu, J.Q.,“Removing benzene from aqueous solution using CMS-filled PDMS pervaporation membranes”, Sep. Purif. Technol., 48, 229-234 (2006).

    12 Papaefstathiou, I., Bilitewskib, U., de Castroa, M.D.L, “Pervaporation:An interface between fermentors and monitoring”, Anal. Chim. Acta,330, 265-272 (1996).

    13 Priego-López, E., Luque de Castro, M.D., “Pervaporation-gas chromatography coupling for slurry samples determination of acetaldehyde and acetone in food”, J. Chromatogr. A, 976, 399-407 (2002).

    14 Ruiz-Jiménez, J., Luque de Castro, M.D., “On-line pervaporation-capillary electrophoresis for the determination of volatile analytes in food slurries”, J. Chromatogr. A, 1128, 251-258 (2006).

    15 Zeng, L., Zeng, F.J., “Study on the improvement of quality in new type Chinese Spirits by pervaporation using composite silicone rubber membrane”, Liquor Making, 31, 79-82 (2004).(in Chinese)

    16 Kittur, A.A., Kariduraganavar, M.Y., Kulkarni, S.S., Aralaguppi,M.I., “Preparation of zeolite-incorporated poly(dimethyl siloxane)membranes for the pervaporation separation of isopropyl alcohol/water mixtures”, J. Appl. Polym. Sci., 96, 1377-1387 (2005).

    17 Travis, C.B., Richard G.M., Leland M.V., “Stability of MFI zeolite-filled PDMS membranes during pervaporative ethanol recovery from aqueous mixtures containing acetic acid”, J. Membr. Sci., 298,117-125 (2007).

    18 Liu, Y., Yu, X.B., Qin, L., Wang, J.D., Yang, Y.R., “In-situ synthesis of ZSM-5 zeolite from metakaolin/spinel and its catalytic performance on methanol conversion”, China Pet. Process. Petrochem. Technol.,12, 23-28 (2010).

    19 Sun, H.L., Lu, L.Y., Chen, X., Jiang, Z.Y., “Pervaporation dehydration of aqueous ethanol solution using H-ZSM-5 filled chitosan membranes”, Sep. Purif. Technol., 58, 429-436 (2008).

    20 Gu, J., Shi, X., Bai, Y.X., Zhang, H.M., Zhang, L., Huang, H., “Silicalitefilled polyether-block-amides membranes for recovering ethanol from aqueous solution by pervaporation”, Chem. Eng. Technol., 32,155-160 (2009).

    21 Zhang, X.Z., Zhuo, R.X., “Synthesis of temperature-sensitive poly(N-isopropylacrylamide) hydrogel with improved surface property”, J. Colloid Interface Sci., 223, 311-313 (2000).

    22 Peng, P., Shi, B.L., Lan, Y.Q., “Preparation of PDMS-silica nanocomposite membranes with silane coupling for recovering ethanol by pervaporation”, Sep. Sci. Technol., 46, 420-427 (2011).

    23 Liang, L., Ruckenstein, E., “Pervaporation of ethanol-water mixtures through polydimethylsiloxane-polystyrene interpenetrating polymer network supported membranes”, J. Membr. Sci., 114, 227-234 (1996).

    24 Qi, R.B., Wang, Y.J., Chen, J., Li, J.D., Zhu, S.L., “Pervaporative desulfurization of model gasoline with Ag2O-filled PDMS membranes”, Sep. Purif. Technol., 57, 170-175 (2007).

    25 Luo, Y., Tan, S. J., Wang, H., Wu, F.W., Liu, X.M., Li, L., Zhang,Z.B., “PPMS composite membranes for the concentration of organics from aqueous solutions by pervaporation”, Chem. Eng. J., 137,496-502 (2008).

    26 Yahaya, G.O., “Separation of phenol from aqueous streams by a composite hollow fiber based pervaporation process using polydimethyl siloxane (PDMS)/polyether-block-amide (PEBA) as two-layer membranes”, Sep. Sci. Technol., 44, 2894-2914 (2009).

    猜你喜歡
    金源
    常州金源汽車內(nèi)飾有限公司
    金源文化研究的回顧與展望
    金源文化與旅游產(chǎn)業(yè)融合創(chuàng)新路徑
    金源照明:現(xiàn)金質(zhì)量下降經(jīng)營(yíng)情況惡化
    半夜響起敲門聲
    簞盡瓢空志未磨
    雨花(2018年12期)2018-11-15 04:18:36
    哎呀,骨折了
    哎呀,骨折了!
    金史研究領(lǐng)域的鴻篇巨著——評(píng)《金源文化辭典》
    文化的旅程與心靈的洗禮——讀王禹浪先生《金源文化研究》有感
    欧美日韩中文字幕国产精品一区二区三区| 精品国产三级普通话版| 亚洲自偷自拍图片 自拍| 桃色一区二区三区在线观看| 最近视频中文字幕2019在线8| 国产男靠女视频免费网站| 免费无遮挡裸体视频| 高清在线国产一区| 成人性生交大片免费视频hd| 国产精品爽爽va在线观看网站| 亚洲成人中文字幕在线播放| av天堂中文字幕网| 99热精品在线国产| www国产在线视频色| 日本a在线网址| 日韩欧美三级三区| 精品人妻1区二区| 国产黄片美女视频| 窝窝影院91人妻| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品中文字幕一二三四区| 黄色女人牲交| 日本成人三级电影网站| 一级毛片高清免费大全| 国产高清三级在线| 成人精品一区二区免费| 天天躁日日操中文字幕| 国产精品av久久久久免费| 最近视频中文字幕2019在线8| 一本久久中文字幕| 国产成人欧美在线观看| 夜夜躁狠狠躁天天躁| 国产久久久一区二区三区| 麻豆一二三区av精品| 一级毛片女人18水好多| 老熟妇乱子伦视频在线观看| 国产一级毛片七仙女欲春2| 九九久久精品国产亚洲av麻豆 | 久久久久久大精品| 精品久久久久久久末码| 免费看十八禁软件| a在线观看视频网站| 亚洲人与动物交配视频| 国产欧美日韩一区二区精品| 国产日本99.免费观看| 欧美极品一区二区三区四区| 日韩大尺度精品在线看网址| 国产精品乱码一区二三区的特点| 国产一区二区三区视频了| 免费在线观看影片大全网站| 欧美+亚洲+日韩+国产| 久久久国产欧美日韩av| 午夜免费观看网址| 国产成人精品无人区| 桃红色精品国产亚洲av| 国产激情久久老熟女| 成人av在线播放网站| 欧美在线一区亚洲| 国产精品久久久久久人妻精品电影| 久久性视频一级片| 国产美女午夜福利| 欧美大码av| 国产激情偷乱视频一区二区| 国产伦在线观看视频一区| 国产高潮美女av| 精品久久久久久,| 国产又色又爽无遮挡免费看| 哪里可以看免费的av片| 国产午夜精品久久久久久| 成年女人永久免费观看视频| 制服丝袜大香蕉在线| 亚洲无线在线观看| 亚洲av熟女| 色精品久久人妻99蜜桃| 色视频www国产| 日韩欧美在线二视频| 看片在线看免费视频| 一区二区三区国产精品乱码| 亚洲午夜精品一区,二区,三区| 国产伦一二天堂av在线观看| 岛国在线观看网站| 国产亚洲精品一区二区www| 中文资源天堂在线| 色综合婷婷激情| 亚洲成av人片在线播放无| 国产欧美日韩精品一区二区| 国产1区2区3区精品| 午夜日韩欧美国产| 日本黄色视频三级网站网址| 女人高潮潮喷娇喘18禁视频| 国产又色又爽无遮挡免费看| 色综合亚洲欧美另类图片| 久久天堂一区二区三区四区| 国产精品九九99| 中文字幕熟女人妻在线| 欧美成人一区二区免费高清观看 | 欧美中文日本在线观看视频| 99热这里只有精品一区 | 欧美日韩精品网址| 在线a可以看的网站| 亚洲电影在线观看av| 日韩中文字幕欧美一区二区| 日本黄色视频三级网站网址| 亚洲精品一区av在线观看| 日韩人妻高清精品专区| 国产又色又爽无遮挡免费看| 亚洲18禁久久av| 国产精品一及| 五月玫瑰六月丁香| 精品免费久久久久久久清纯| 国产亚洲精品久久久com| 日本一本二区三区精品| 久久久久亚洲av毛片大全| 一个人免费在线观看电影 | 中文字幕人妻丝袜一区二区| 亚洲欧美激情综合另类| 亚洲欧美精品综合一区二区三区| 99热只有精品国产| 一进一出抽搐动态| 无限看片的www在线观看| 日本 av在线| 久久久久九九精品影院| 国产av麻豆久久久久久久| 97碰自拍视频| 免费人成视频x8x8入口观看| 丁香六月欧美| 亚洲成人精品中文字幕电影| 91久久精品国产一区二区成人 | 国产激情偷乱视频一区二区| 亚洲自拍偷在线| 日日干狠狠操夜夜爽| 国产激情久久老熟女| 午夜福利在线观看免费完整高清在 | 老司机深夜福利视频在线观看| 国产伦一二天堂av在线观看| 九九在线视频观看精品| av中文乱码字幕在线| 久久婷婷人人爽人人干人人爱| 精品国产美女av久久久久小说| 日韩三级视频一区二区三区| 国内毛片毛片毛片毛片毛片| 观看美女的网站| 天天躁日日操中文字幕| 在线看三级毛片| 99久久综合精品五月天人人| 国产精品久久电影中文字幕| 人妻丰满熟妇av一区二区三区| 亚洲欧美精品综合一区二区三区| 国产一区二区在线av高清观看| 色视频www国产| h日本视频在线播放| 国产精品一区二区三区四区久久| 欧美色欧美亚洲另类二区| 成人高潮视频无遮挡免费网站| 国产私拍福利视频在线观看| 桃色一区二区三区在线观看| 在线观看66精品国产| 亚洲国产欧洲综合997久久,| xxxwww97欧美| 在线观看免费视频日本深夜| 久久久久久国产a免费观看| 欧美3d第一页| 亚洲一区二区三区色噜噜| 亚洲狠狠婷婷综合久久图片| av黄色大香蕉| 亚洲美女黄片视频| 好男人在线观看高清免费视频| 国产熟女xx| 九九久久精品国产亚洲av麻豆 | 人人妻,人人澡人人爽秒播| av视频在线观看入口| 观看免费一级毛片| 国产成人系列免费观看| 久久性视频一级片| 岛国在线观看网站| 90打野战视频偷拍视频| 国产精品久久电影中文字幕| 欧美又色又爽又黄视频| 在线观看午夜福利视频| 91在线观看av| 最新中文字幕久久久久 | 小说图片视频综合网站| 亚洲九九香蕉| 国产精品久久电影中文字幕| 日本五十路高清| 亚洲精华国产精华精| 精品国内亚洲2022精品成人| 精品国产三级普通话版| 99久久精品国产亚洲精品| 国产精品99久久99久久久不卡| 天堂√8在线中文| 久久草成人影院| 国产极品精品免费视频能看的| 极品教师在线免费播放| 夜夜躁狠狠躁天天躁| 午夜视频精品福利| 中国美女看黄片| 夜夜躁狠狠躁天天躁| 欧美av亚洲av综合av国产av| 香蕉国产在线看| 国产精品99久久久久久久久| 女生性感内裤真人,穿戴方法视频| 婷婷丁香在线五月| 神马国产精品三级电影在线观看| 禁无遮挡网站| 国产毛片a区久久久久| 久久久水蜜桃国产精品网| 欧美中文日本在线观看视频| 国产乱人视频| 男插女下体视频免费在线播放| 欧美高清成人免费视频www| 久久精品国产亚洲av香蕉五月| 欧美日韩福利视频一区二区| 午夜两性在线视频| 欧美在线一区亚洲| 亚洲国产日韩欧美精品在线观看 | 国产成人影院久久av| 国产亚洲精品av在线| 日韩欧美一区二区三区在线观看| 老司机午夜福利在线观看视频| 精品国产亚洲在线| 亚洲国产精品成人综合色| 亚洲 欧美一区二区三区| 国产一区在线观看成人免费| x7x7x7水蜜桃| 1000部很黄的大片| 久久久久九九精品影院| 亚洲av五月六月丁香网| 国内毛片毛片毛片毛片毛片| 精品久久久久久久人妻蜜臀av| 久久婷婷人人爽人人干人人爱| 午夜激情福利司机影院| 三级国产精品欧美在线观看 | 三级国产精品欧美在线观看 | 三级国产精品欧美在线观看 | 12—13女人毛片做爰片一| 观看美女的网站| 免费观看精品视频网站| 午夜免费观看网址| 法律面前人人平等表现在哪些方面| 日韩精品青青久久久久久| 中国美女看黄片| 国产伦一二天堂av在线观看| 亚洲精品国产精品久久久不卡| 欧美中文综合在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人aa在线观看| 一级黄色大片毛片| av视频在线观看入口| 成人精品一区二区免费| 亚洲精品美女久久av网站| 亚洲国产中文字幕在线视频| 美女免费视频网站| 欧美黄色淫秽网站| 欧美+亚洲+日韩+国产| 十八禁人妻一区二区| 欧美乱色亚洲激情| 丰满人妻一区二区三区视频av | 亚洲人成网站高清观看| 一进一出好大好爽视频| 国产精品久久电影中文字幕| 国产av在哪里看| 精品欧美国产一区二区三| 亚洲色图av天堂| 黄色视频,在线免费观看| 中文字幕久久专区| 国产成年人精品一区二区| 欧美另类亚洲清纯唯美| av天堂在线播放| 黄片大片在线免费观看| 国语自产精品视频在线第100页| 极品教师在线免费播放| 小蜜桃在线观看免费完整版高清| 一二三四社区在线视频社区8| www.精华液| 国产野战对白在线观看| 久久这里只有精品19| 999久久久精品免费观看国产| 亚洲aⅴ乱码一区二区在线播放| 怎么达到女性高潮| 亚洲真实伦在线观看| 色综合站精品国产| 精品熟女少妇八av免费久了| 亚洲国产精品久久男人天堂| 可以在线观看的亚洲视频| 亚洲成人免费电影在线观看| 欧美xxxx黑人xx丫x性爽| 一个人看视频在线观看www免费 | 国产视频内射| 此物有八面人人有两片| 国产麻豆成人av免费视频| 亚洲熟女毛片儿| 国产成人精品久久二区二区91| 人人妻人人看人人澡| 中文字幕人妻丝袜一区二区| 久久热在线av| 国产私拍福利视频在线观看| 亚洲欧洲精品一区二区精品久久久| 成人三级黄色视频| 99热6这里只有精品| 黄色 视频免费看| 欧美成人一区二区免费高清观看 | 成年人黄色毛片网站| 网址你懂的国产日韩在线| 欧美日韩乱码在线| 欧美乱码精品一区二区三区| or卡值多少钱| 少妇的逼水好多| 免费高清视频大片| 淫妇啪啪啪对白视频| 日本 av在线| 中出人妻视频一区二区| 日韩成人在线观看一区二区三区| 日本黄色片子视频| 亚洲真实伦在线观看| 熟女人妻精品中文字幕| 日韩免费av在线播放| 国产精华一区二区三区| 久久香蕉精品热| 91久久精品国产一区二区成人 | 午夜两性在线视频| 高清毛片免费观看视频网站| 亚洲人成网站在线播放欧美日韩| 一本久久中文字幕| 精品国产超薄肉色丝袜足j| 麻豆成人av在线观看| 一夜夜www| 香蕉久久夜色| 91av网站免费观看| 国产午夜精品论理片| 露出奶头的视频| 成人一区二区视频在线观看| 国产午夜精品久久久久久| 99热这里只有是精品50| 免费高清视频大片| 国产av麻豆久久久久久久| 欧美黑人欧美精品刺激| 国产精品 欧美亚洲| www日本黄色视频网| 成年免费大片在线观看| 亚洲国产精品999在线| 亚洲欧美激情综合另类| 色在线成人网| 久久精品国产99精品国产亚洲性色| 99国产极品粉嫩在线观看| 国产欧美日韩一区二区精品| 老熟妇乱子伦视频在线观看| 中亚洲国语对白在线视频| 欧美日韩精品网址| 免费看十八禁软件| 日本黄色视频三级网站网址| tocl精华| 成人av一区二区三区在线看| 熟女人妻精品中文字幕| 久久久久亚洲av毛片大全| 三级毛片av免费| 久久久久久人人人人人| 可以在线观看的亚洲视频| 老熟妇仑乱视频hdxx| 久9热在线精品视频| 两个人的视频大全免费| 狂野欧美白嫩少妇大欣赏| 亚洲专区中文字幕在线| 免费在线观看成人毛片| 欧美日本亚洲视频在线播放| 亚洲精品456在线播放app | 欧美大码av| 久久精品国产清高在天天线| 国产高清三级在线| 国产av不卡久久| 啦啦啦韩国在线观看视频| 免费高清视频大片| 小蜜桃在线观看免费完整版高清| 国产精品精品国产色婷婷| 99久久99久久久精品蜜桃| 午夜福利免费观看在线| 好看av亚洲va欧美ⅴa在| 亚洲九九香蕉| 日韩精品中文字幕看吧| 最近最新免费中文字幕在线| 午夜两性在线视频| av女优亚洲男人天堂 | 国产成人欧美在线观看| 亚洲国产看品久久| 国产av一区在线观看免费| 午夜免费观看网址| 欧美一级a爱片免费观看看| 亚洲精品色激情综合| 夜夜躁狠狠躁天天躁| 老汉色av国产亚洲站长工具| 99久久精品一区二区三区| 女生性感内裤真人,穿戴方法视频| 亚洲av中文字字幕乱码综合| 亚洲九九香蕉| 亚洲国产精品合色在线| 最近最新免费中文字幕在线| 亚洲人成网站在线播放欧美日韩| 好男人在线观看高清免费视频| 亚洲成人久久性| 午夜精品久久久久久毛片777| 麻豆久久精品国产亚洲av| 亚洲欧美日韩高清专用| 又粗又爽又猛毛片免费看| x7x7x7水蜜桃| 国产三级在线视频| 久久性视频一级片| 啦啦啦韩国在线观看视频| 午夜激情欧美在线| 曰老女人黄片| 国产一区二区在线av高清观看| 欧洲精品卡2卡3卡4卡5卡区| 精品欧美国产一区二区三| 亚洲av中文字字幕乱码综合| 88av欧美| 在线播放国产精品三级| 99热只有精品国产| 成人精品一区二区免费| 精品免费久久久久久久清纯| av福利片在线观看| 青草久久国产| 国产乱人视频| 亚洲欧美激情综合另类| 国产不卡一卡二| 亚洲第一电影网av| 一二三四社区在线视频社区8| 窝窝影院91人妻| 中文字幕熟女人妻在线| 不卡av一区二区三区| 日日干狠狠操夜夜爽| 国产精品98久久久久久宅男小说| 一本久久中文字幕| 伊人久久大香线蕉亚洲五| 日本撒尿小便嘘嘘汇集6| 国产野战对白在线观看| 国产久久久一区二区三区| 他把我摸到了高潮在线观看| 欧美一级a爱片免费观看看| 欧美日韩中文字幕国产精品一区二区三区| 国产伦在线观看视频一区| 99国产精品一区二区蜜桃av| 久久香蕉精品热| 后天国语完整版免费观看| 黄色 视频免费看| 热99re8久久精品国产| 午夜影院日韩av| 国产精品久久电影中文字幕| 国产高清视频在线观看网站| 国产成人精品久久二区二区免费| 日日干狠狠操夜夜爽| 三级男女做爰猛烈吃奶摸视频| 久久午夜亚洲精品久久| 婷婷精品国产亚洲av在线| 特大巨黑吊av在线直播| 免费电影在线观看免费观看| 啦啦啦观看免费观看视频高清| 国产一区二区三区在线臀色熟女| www日本在线高清视频| 国产伦在线观看视频一区| 中文字幕久久专区| 91麻豆精品激情在线观看国产| www.精华液| 亚洲国产看品久久| 久久久国产成人精品二区| 日本五十路高清| 在线免费观看不下载黄p国产 | 日韩欧美国产一区二区入口| 久久久国产成人免费| 久久国产精品影院| 母亲3免费完整高清在线观看| 在线国产一区二区在线| 床上黄色一级片| 国产aⅴ精品一区二区三区波| 婷婷六月久久综合丁香| 欧美日韩亚洲国产一区二区在线观看| 在线视频色国产色| 国产成人欧美在线观看| 日本与韩国留学比较| 久久这里只有精品19| 国产三级中文精品| 国产美女午夜福利| 国产爱豆传媒在线观看| 午夜激情福利司机影院| 一区福利在线观看| 国产精品电影一区二区三区| а√天堂www在线а√下载| 99视频精品全部免费 在线 | 草草在线视频免费看| 亚洲欧美日韩高清在线视频| 在线观看美女被高潮喷水网站 | 国产 一区 欧美 日韩| 成年女人永久免费观看视频| 欧美激情久久久久久爽电影| 亚洲色图 男人天堂 中文字幕| 国产三级在线视频| 中文字幕最新亚洲高清| 色综合站精品国产| 国产黄片美女视频| 欧美日韩福利视频一区二区| 亚洲国产看品久久| 国产探花在线观看一区二区| 精品免费久久久久久久清纯| 亚洲中文字幕一区二区三区有码在线看 | 在线a可以看的网站| 一进一出抽搐动态| 99久久久亚洲精品蜜臀av| 狂野欧美激情性xxxx| 国产私拍福利视频在线观看| 亚洲成av人片在线播放无| 精品久久久久久久末码| 男人舔奶头视频| 国产久久久一区二区三区| 国产三级黄色录像| 又黄又爽又免费观看的视频| 国产欧美日韩一区二区精品| 精华霜和精华液先用哪个| 亚洲av成人精品一区久久| 噜噜噜噜噜久久久久久91| 黄色成人免费大全| 18禁黄网站禁片午夜丰满| 18禁黄网站禁片免费观看直播| 精品一区二区三区av网在线观看| 免费大片18禁| 国产午夜福利久久久久久| 久久久国产成人精品二区| 88av欧美| 天天一区二区日本电影三级| tocl精华| 99re在线观看精品视频| 日韩大尺度精品在线看网址| 精品免费久久久久久久清纯| 我的老师免费观看完整版| 亚洲欧美激情综合另类| 亚洲激情在线av| 在线观看舔阴道视频| 国模一区二区三区四区视频 | 亚洲男人的天堂狠狠| 日韩三级视频一区二区三区| 亚洲av五月六月丁香网| 狂野欧美白嫩少妇大欣赏| 九九久久精品国产亚洲av麻豆 | 国产高清视频在线观看网站| 99国产精品一区二区三区| 欧美成狂野欧美在线观看| 亚洲自拍偷在线| 精品久久久久久久久久免费视频| 午夜亚洲福利在线播放| 三级国产精品欧美在线观看 | 亚洲熟妇中文字幕五十中出| 亚洲欧美日韩东京热| 久久久国产成人免费| 男人舔女人下体高潮全视频| 成人精品一区二区免费| 这个男人来自地球电影免费观看| 人人妻人人澡欧美一区二区| 久久午夜综合久久蜜桃| 午夜亚洲福利在线播放| 悠悠久久av| 欧美中文综合在线视频| 亚洲狠狠婷婷综合久久图片| 一区二区三区激情视频| 免费看日本二区| 亚洲熟妇熟女久久| 婷婷精品国产亚洲av| 免费在线观看成人毛片| 日韩欧美三级三区| 欧美精品啪啪一区二区三区| 女警被强在线播放| 久久天堂一区二区三区四区| 国产精品亚洲美女久久久| 免费观看的影片在线观看| 亚洲成人中文字幕在线播放| 国产欧美日韩精品一区二区| 午夜福利在线观看吧| 亚洲真实伦在线观看| 亚洲在线自拍视频| 欧美zozozo另类| 此物有八面人人有两片| xxx96com| 亚洲av熟女| 亚洲专区中文字幕在线| 中文在线观看免费www的网站| 观看美女的网站| 日韩欧美 国产精品| 国产精品永久免费网站| 国产精品av久久久久免费| 麻豆久久精品国产亚洲av| 日韩欧美在线二视频| 欧美性猛交╳xxx乱大交人| 午夜福利在线观看免费完整高清在 | 男女之事视频高清在线观看| 午夜视频精品福利| 久久久久精品国产欧美久久久| 欧美日韩乱码在线| 国内少妇人妻偷人精品xxx网站 | a级毛片a级免费在线| 国产精品久久久久久久电影 | 又黄又爽又免费观看的视频| 热99re8久久精品国产| 亚洲av美国av| 亚洲色图av天堂| 日本黄色片子视频| 久久久水蜜桃国产精品网| 一级黄色大片毛片| 亚洲第一欧美日韩一区二区三区| 国产精品日韩av在线免费观看| 中文亚洲av片在线观看爽| 欧美一级毛片孕妇| 九九热线精品视视频播放| 精品国产亚洲在线| 法律面前人人平等表现在哪些方面| av在线天堂中文字幕| av在线蜜桃| av黄色大香蕉| 岛国在线免费视频观看| 婷婷精品国产亚洲av在线|