• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Second harmonic generation from precise diamond blade diced ridge waveguides

    2022-09-24 08:00:14HuiXu徐慧ZiqiLi李子琦ChiPang逄馳RangLi李讓GenglinLi李庚霖ShAkhmadalievShengqiangZhou周生強(qiáng)QingmingLu路慶明YuechenJia賈曰辰andFengChen陳峰
    Chinese Physics B 2022年9期
    關(guān)鍵詞:陳峰李子

    Hui Xu(徐慧) Ziqi Li(李子琦) Chi Pang(逄馳) Rang Li(李讓) Genglin Li(李庚霖) Sh. AkhmadalievShengqiang Zhou(周生強(qiáng)) Qingming Lu(路慶明) Yuechen Jia(賈曰辰) and Feng Chen(陳峰)

    1School of Physics,State Key Laboratory of Crystal Materials,Shandong University,Jinan 250100,China

    2Division of Physics and Applied Physics,School of Physical and Mathematical Sciences,Nanyang Technological University,Singapore 637371,Singapore

    3Institute of Ion Beam and Materials Research,Helmholtz-Zentrum Dresden-Rossendorf,Dresden 01314,Germany

    4School of Chemistry and Chemical Engineering,Shandong University,Jinan 250100,China

    Keywords: optical waveguides,Nd:GdCOB crystal,second harmonic generation

    1. Introduction

    Optical waveguides, as one of the essential components of integrated photonics, can confine light fields in extremely small volumes.[1,2]As a result, the light intensity obtained from the waveguide volume is much higher than that in the bulk.[3-5]This feature provides meaningful advantages in nonlinear optical applications, where various nonlinear phenomena can be generated from the waveguide structure at a relatively low optical power. For example, frequency conversion processes based on waveguides feature higher conversion efficiencies and more flexible mode selection compared with those based on bulks.[4]Combining the versatility of multifunctional crystals with the compact geometries of waveguide structures, crystalline waveguides can be used to construct multifunctional optical devices with small footprints,such as on-chip lasers, compact optical modulators and nonlinear wavelength converters.[6,7]In practice,channel or ridge waveguides with light field confinement in two dimensions(2D) are preferred to one-dimensional (1D) planar waveguides due to their better optical confinement and more flexible geometry.[8]

    Ion implantation, as an important method for material modification, has been applied to a variety of crystals.[9-15]By bombarding the target crystal surface with energetic ion beams, localized lattice damage and refractive index modification appear at near-surface regions, resulting in the formation of an optical waveguide.[16-18]Up to now, this technique has been applied to the preparation of waveguides in dozens of crystalline materials.[8,16]Optical waveguides manufactured by ion implantation are generally 1D planar structures. Additional surface microfabrication is therefore needed to obtain 2D waveguide structures. Of the techniques used for surface microfabrication, femtosecond laser direct writing (FsLDW) and precise diamond blade dicing are the most common. Both techniques have been utilized to manufacture ridge waveguides based on ion-irradiated Nd:YAG planar waveguides.[19-23]However,compared with the ridge waveguides fabricated by FsLDW, those prepared by precise diamond blade dicing feature lower scattering losses and a higher optical quality owing to their smoother side walls.[19,24-26]

    Combining the lasing and luminescence characteristics of Nd3+ions with the nonlinear optical properties of a GdCa4O(BO3)3(GdCOB) matrix, it is shown that neodymium-doped GdCOB (Nd:GdCOB) has attractive optical properties as an excellent laser gain medium and an efficient self-frequency doubling(SFD)crystal.[27-31]In previous works, planar and channel waveguides have been fabricated in Nd:GdCOB crystals by ion irradiation[32]and FsLDW,[33]and second harmonic generation(SHG)has also been achieved using these waveguide structures. However, up to now,Nd:GdCOB ridge waveguides produced by ion irradiation and precise diamond dicing have not been reported.

    In this work, we demonstrate the fabrication of Nd:GdCOB ridge waveguides by combining ion beam irradiation with precise diamond blade dicing techniques. We performed SHG at 532 nm in both ridge and planar waveguides using 1064 nm pulsed fundamental waves.

    2. Experiments

    The 8 at.% Nd-doped GdCOB crystal used in this work was cut to satisfy type-I phase matching conditions (θ=161.5°,φ=0°)with dimensions of 11 mm×9 mm×2.2 mm.The crystal facets of 11 mm×9 mm and 11 mm×2.2 mm were well polished to an optical grade. As Fig.1(a)shows,the surface of the sample was irradiated by carbon(C5+)ions with an energy of 15 MeV at a fluence of 2×1014ions·cm-2. As a result,a planar waveguide with a thickness of~10μm(according to the microscopic image and the ion irradiation calculations,as presented in the next section)was achieved. Ion irradiation was accomplished using the 3 MV tandem accelerator at Helmholtz-Zentrum Dresden-Rossendorf,Germany. To reduce the channel effect,the incident ion beam was deviated by 7°from the normal to the sample surface. After that,based on the planar configuration,we constructed ridge waveguides using diamond blade dicing(see Fig.1(b)). During this process,several air grooves perpendicular to the crystal surface with a size of approximately 11 mm×2.2 mm were produced with the blade (DISCO Corp., P1A851 SD3000R10B10)[34]installed on a precision dicing machine(Jingchuang Advanced,AR3000). The rotation and movement velocities were set to 20000 rpm and 0.05 mm·s-1, respectively. With vertical optical confinement provided by the ion-induced change in refractive index and lateral optical confinement offered by two neighboring grooves,ridge waveguides with widths of 10μm(WG1), 20 μm (WG2), 25 μm (WG3), and 30 μm (WG4)were formed. Both irradiation and precise diamond blade dicing are high-precision and repeatable waveguide construction techniques,[35-37]so that the waveguides are constructed with good stability.

    Fig. 1. Schematic illustrations of (a) 15 MeV C5+ ion irradiation and (b)precise diamond blade dicing for Nd:GdCOB ridge waveguide fabrication.

    After fabrication, micro-Raman measurements were carried out using a spectrometer (Horiba/Jobin Yvon HR800)to investigate the microstructural modification of Nd:GdCOB crystal. With a detected range of 50 cm-1-1500 cm-1,a laser beam at 473 nm was focused on the waveguide cross sections and bulk at room temperature.

    Micro-second harmonic(μ-SH)spectroscopic analysis of the sample was performed to evaluate the nonlinear properties of the waveguides using a confocal microscopy testing platform. A laser beam(with a pulse duration of~20 ns,a pulse energy of~2 μJ and a pulse repetition rate of~5 MHz) at 1030 nm produced by a microjoule ultrafast fiber laser system (ANTAUS-10W-2u/5M) was coupled to the sample with a 100× objective [numerical aperture (NA)=0.3]. The reflected μ-SH signal was collected by the same objective, and after passing through several mirrors and lenses the signal was detected by a spectrometer.

    As shown in Fig. 2(a), we performed SHG characterization experiments based on an end-face coupling arrangement.After the 1064 nm light beam was emitted from the pulsed laser (with a pulse width of~11.05 ns, a pulse energy of~80μJ and a repetition rate of~5 kHz),its power and polarization were adjusted by a neutral density filter and a half-wave plate, respectively. A microscope objective(25×, NA=0.4)was used for optical in-coupling. The SHG and residual fundamental signal outputs from the waveguides were collected by another microscope objective. In order to detect the SHG signal, we used a spectrometer and a powermeter behind an optical low-pass filter,which has a transmittance of~98%at 532 nm and a reflectivity of>99%at 1064 nm. Figures 2(b)-2(e)present the fundamental modes along transverse magnetic(TM)and second harmonic(SH)modes along transverse electric(TE)directions in planar and WG3 ridge waveguides(all the ridge waveguides show similar modal distributions). Both fundamental and SH waves are well confined in the waveguiding regions, showing nearly single-mode profiles, which are very beneficial for SHG.

    Fig. 2. (a) The end-face coupling arrangement for SHG characterization of Nd:GdCOB waveguides. The mode field distribution of planar and WG3 ridge waveguides at 1064 nm[(b),(d)]and at 532 nm[(c),(e)](OLPF,optical low-pass filter).

    3. Results and discussion

    The nuclear(Sn)and electronic(Se)stopping power profiles of 15 MeV C5+ions in Nd:GdOCB were calculated using the SRIM-2008(Stopping and Range of Ions in Matter 2008)code, and the results are shown in Fig. 3(a). A non-zeroSeis observed within the ion penetration range of 0μm-10μm,peaking at approximately 1.7 keV·nm-1with a depth value of~6.7 μm. In contrast, theSnvalue remains zero within the first 9 μm below the surface and reaches a maximum of 0.16 keV·nm-1around 10 μm beneath the surface. Therefore,the electronic damage is considered to be the main cause for the change in refractive index in the ion-irradiated area,whereas the nuclear damage at the end of the ion trajectory is responsible for the creation of the optical barrier. Moreover,the formation of the waveguide layer is a collective effect of bothSnandSe. The maximum modification of refractive index in the waveguide region is about 0.003 estimated by the formula

    whereΘmis the maximum incident angle at which the laser beam cannot be focused into the waveguide by the microscope objective andn=1.7184 is the refractive index of the Nd:GdCOB crystal.[32]Therefore, taking the stopping power profiles as references, we reconstructed the refractive index distribution(see Fig.3(a)). Figures 3(b)and 3(e)demonstrate the microscopic images of the planar waveguide and the WG2 ridge waveguide, respectively. The thickness of the modified layer is observed to be around 10μm,which is in fairly good agreement with the calculation performed using the SRIM-2008 code.[38]We imported the index profile into Rsoft Beam PROP 8.0[39]and simulated the near-field modal distribution.Taking a planar waveguide and WG2 ridge waveguide as examples, figures 3(c) and 3(f) display the simulated near-field distributions at 1064 nm,which are very similar to the experimental results imaged by a CCD camera in the end-face coupling setup (see Figs. 3(d) and 3(g)), suggesting the reasonability of the reconstructed refractive index profile.

    Fig.3. (a)The curves of the electronic stopping power(blue line)and the nuclear stopping power(red line)distribution,as well as the refractive index profile of the waveguide(green line),as functions of the depth. Parts(b)and(e)show microscopic images of the cross sections of planar and WG2 ridge waveguides,respectively.Experimental[(c),(f)]and simulation[(d),(g)]results of the modal profiles of planar and WG2 ridge waveguides along the TE direction at 1064 nm.

    Fig.4. Output power of(a)planar and(b)WG3 ridge waveguides as a function of all-angle 1064 nm laser transmission with a constant launched power of 17.4 mW under continuous wave configuration.

    To investigate the polarization-dependent properties of the waveguides, the all-angle optical transmission of the fabricated waveguide at 1064 nm was measured. As one can see from Fig. 4, for both planar and WG3 ridge waveguides (all the ridge waveguides show similar results), the output power reaches its maxima(0.86 mW and 0.62 mW)along TE polarization(0°and 180°)while decreasing to its minima(0.22 mW and 0.16 mW) along TM polarization (90°and 270°). However,the SHG process occurs under a TMω →TE2ωprocess in Nd:GdCOB waveguides, so the polarization-dependent effect has a negative impact on the frequency-doubled output power and conversion efficiency of SHG.

    Fig.5. Micro-Raman spectra obtained from the WG3 ridge waveguide(red dotted line)and the bulk(blue line)of the Nd:GdCOB crystal.

    Fig. 6. (a) The emitted intensity of μ-SH spectra when the laser beam (at 1030 nm) is focused at the WG3 ridge waveguide (red line), the planar waveguide (green line) and the bulk (gray line). (b) The laser spectra of the fundamental beam at 1064 nm(red line)and second harmonic generation at 532 nm(green line)in the WG3 ridge waveguide.

    Micro-Raman spectra of Nd:GdCOB at the substrate and C5+ion implantation regions are presented in Fig.5. The Raman peak number and position show no differences between the bulk and waveguide areas. However,the Raman intensity in the waveguide increases with respect to the bulk,which may be a result of the lattice expansion attributed to electronic collisions during ion irradiation.[40-42]It is also possible that C5+ion implantation has caused more point defects in the crystal,leading to a slight broadening of the Raman peak half-width.

    Theμ-SH responses of the ridge and planar waveguides,as well as the bulk area, were investigated, as shown in Fig. 6(a). From the SH intensity profiles, the intensity distributions for the bulk,planar and ridge waveguides have similar shapes,with their peaks at the same position.However,the SH signal in the WG3 ridge waveguide(all the ridge waveguides show similar results) is enhanced significantly, at around ten times greater than that in the bulk. It is evident that the nonlinear properties of the Nd:GdCOB crystal are well retained and further greatly enhanced in the waveguide. As shown in Fig. 6(b), the spectra measured by the pulsed laser pump of the fundamental(at 1064 nm)and SH(at 532 nm)waves from the WG3 ridge waveguide clearly depict the nonlinear process of SHG in Nd:GdCOB waveguides. The 1064 nm fundamental and SH waves are determined to be TM-and TE-polarized,respectively. This verifies that the SHG process occurs under the TMω →TE2ωprocess,which is in good accordance with the phase matching configuration of the bulk.

    Figure 7 illustrates the second harmonic powers (average power)and the conversion efficiencies as functions of the 1064 nm fundamental pump power for planar and WG4 ridge waveguides (WG4 has the best frequency doubling performance of any of the ridge waveguides)under the pulsed configuration. The measured data points are marked with solid circles (blue for the SH powers and red for the conversion efficiencies). For the planar waveguide, the maximum average power output of the SH light is~1.04 mW with a pump power of~112 mW, resulting in a conversion efficiency ofη ≈8.32 %·W-1. The maximum average output power of the SH light for the WG4 ridge waveguide is~2.80 mW,which is around two times larger than that of the planar waveguide. The conversion efficiency reaches a maximum value of~22.36 %·W-1, leading to a significantly enhanced performance. An annealing treatment at 260°C for about 30 min was carried out in order to observe the changes in related nonlinear properties. However,this thermal operation has a negligible influence on the SHG performance of the waveguides.The data on maximum SHG output power (Pmax), the conversion efficiency (ηmax) and the propagation losses (α) for all ridge waveguides are summarized in Table 1, and the related properties of the planar waveguide are also included for reference. With an increase in the width of the ridge waveguide,the corresponding maximum SHG power and conversion efficiency will be enhanced. The similar dependence of the SHG properties on the ridge width can also be found in previously reported KTiOPO4ridge waveguides.[26]Furthermore,ridge waveguides show better performance than planar waveguides in frequency doubling, mainly due to the more compact structure of ridge waveguides, which leads to a stronger light intensity confined in a limited volume. The propagation losses of the ridge waveguides decrease with increase in ridge width. All ridge waveguides have higher propagation losses than planar waveguide,mainly due to the relatively high waveguide side-wall roughness caused by the dicing process.By optimizing the dicing parameters, such as the blade type and its rotation velocity,the roughness of the waveguide sidewall can be lowered,thereby reducing the propagation loss of the fabricated ridge waveguide.[43]In addition, reduction of the waveguide side-wall roughness can be also realized using ion beam milling.[44]The frequency doubling efficiency will be improved if waveguide losses are optimized, and a selffrequency-doubling effect can be expected.

    Table 1. The maximum output SH powers(Pmax),the maximum conversion efficiencies(ηmax)and propagation losses(α)of the Nd:GdCOB planar and ridge waveguides.

    Fig.7. Second harmonic power and the corresponding conversion efficiency as functions of the fundamental pump power in(a)planar and(b)WG4 ridge waveguides.

    4. Conclusion

    We have fabricated ridge waveguides in Nd:GdCOB crystals through a combination of carbon ion irradiation and precise diamond blade dicing. Based on an end-face coupling setup,the optical waveguiding properties of both Nd:GdCOB ridge waveguides and planar waveguide were experimentally investigated. The simulated modal profiles agree well with the measurements, suggesting the rationality of the constructed index profile based on stopping powers. From the micro-Raman spectrum, lattice expansion occurs during carbon ion implantation with more point defects.Throughμ-SH analysis,the nonlinear properties of the Nd:GdCOB crystal have been found to be fully preserved and greatly enhanced within the waveguides. SHG at 532 nm based on type I phase matching has been observed under a 1064 nm pulsed laser configuration. The maximum SH power of~2.80 mW was obtained in the WG4 ridge waveguide, and the corresponding conversion efficiency was~22.36 %·W-1. For planar waveguide,the maximum SH power was~1.04 mW with a conversion efficiency of 8.32%·W-1.Our work demonstrates that carbon ion irradiation combined with precise diamond blade dicing can be used to fabricate efficient nonlinear waveguides, providing potential applications in integrated photonics.

    Acknowledgments

    The authors thank Dr Y.Cheng for waveguide fabrication and Professor H.Yu forμ-SH analysis.

    Project supported by the Taishan Scholars Youth Expert Program of Shandong Province and the Qilu Young Scholar Program of Shandong University,China.

    猜你喜歡
    陳峰李子
    陳峰:求真務(wù)實(shí),以勇于創(chuàng)新鑄就科學(xué)品質(zhì)
    泳池惡作劇青春抱恙:隱身女神讓愛(ài)“雄起”
    Entanglement witnesses of four-qubit tripartite separable quantum states*
    一次難忘的生日
    秋天
    李子有多少
    奔跑吧!李子柒
    海峽姐妹(2020年1期)2020-03-03 13:35:52
    單身吧
    桃之夭夭B(2019年10期)2019-12-14 14:06:42
    我的糊涂媽媽
    無(wú)解≠增根
    91麻豆av在线| 熟女少妇亚洲综合色aaa.| 亚洲av电影在线观看一区二区三区| 丰满迷人的少妇在线观看| 国产成人精品久久二区二区免费| 999精品在线视频| 精品视频人人做人人爽| 亚洲黑人精品在线| 欧美中文综合在线视频| 国产精品久久久久久精品电影小说| 伊人久久大香线蕉亚洲五| 欧美黑人欧美精品刺激| 1024视频免费在线观看| 亚洲欧洲精品一区二区精品久久久| 在现免费观看毛片| 成年动漫av网址| 中文字幕人妻丝袜制服| 亚洲国产欧美在线一区| 久久久久网色| 国产主播在线观看一区二区 | 久久久久精品国产欧美久久久 | 久久这里只有精品19| 晚上一个人看的免费电影| 精品少妇久久久久久888优播| 99久久精品国产亚洲精品| 老鸭窝网址在线观看| 免费看不卡的av| 黄网站色视频无遮挡免费观看| 男人操女人黄网站| 免费女性裸体啪啪无遮挡网站| 91精品三级在线观看| 久久久久久免费高清国产稀缺| 黄色怎么调成土黄色| 成人三级做爰电影| 国产成人欧美在线观看 | 91麻豆精品激情在线观看国产 | 日本猛色少妇xxxxx猛交久久| 久久99精品国语久久久| 日本av免费视频播放| 视频区图区小说| 亚洲精品乱久久久久久| 十分钟在线观看高清视频www| 成人国语在线视频| 中文字幕最新亚洲高清| 咕卡用的链子| 久久久久国产精品人妻一区二区| 久久久国产欧美日韩av| 久久精品国产亚洲av涩爱| 成人亚洲欧美一区二区av| 欧美精品人与动牲交sv欧美| 国产精品成人在线| √禁漫天堂资源中文www| 国产精品 欧美亚洲| av国产久精品久网站免费入址| 手机成人av网站| 中文字幕制服av| 1024香蕉在线观看| 欧美在线一区亚洲| 日韩大片免费观看网站| 搡老乐熟女国产| 91精品伊人久久大香线蕉| 久久精品亚洲熟妇少妇任你| 亚洲成人免费电影在线观看 | 日本91视频免费播放| 无遮挡黄片免费观看| 国产国语露脸激情在线看| 大型av网站在线播放| 91精品三级在线观看| 精品一区二区三卡| 赤兔流量卡办理| 免费看不卡的av| 亚洲成av片中文字幕在线观看| 波野结衣二区三区在线| 99国产综合亚洲精品| 天堂中文最新版在线下载| 国产日韩欧美亚洲二区| 自拍欧美九色日韩亚洲蝌蚪91| 伊人亚洲综合成人网| 国产有黄有色有爽视频| 精品久久久久久久毛片微露脸 | 国产人伦9x9x在线观看| 亚洲,一卡二卡三卡| 欧美 亚洲 国产 日韩一| 999精品在线视频| 国产免费又黄又爽又色| 伊人久久大香线蕉亚洲五| 999精品在线视频| xxx大片免费视频| 亚洲国产日韩一区二区| 搡老岳熟女国产| 精品人妻1区二区| 日韩精品免费视频一区二区三区| 一级,二级,三级黄色视频| 久久午夜综合久久蜜桃| 亚洲精品在线美女| 岛国毛片在线播放| 成人三级做爰电影| 99热全是精品| 久久久国产精品麻豆| 日本wwww免费看| 精品国产国语对白av| 欧美av亚洲av综合av国产av| 亚洲五月婷婷丁香| 亚洲国产欧美网| 午夜福利视频在线观看免费| 亚洲一区二区三区欧美精品| 国产成人av激情在线播放| 欧美成人精品欧美一级黄| www.av在线官网国产| 极品人妻少妇av视频| av电影中文网址| 日本欧美视频一区| 最新的欧美精品一区二区| 黑人欧美特级aaaaaa片| 精品亚洲成国产av| 亚洲五月婷婷丁香| 色播在线永久视频| 成人午夜精彩视频在线观看| 香蕉国产在线看| 丁香六月欧美| 一区二区日韩欧美中文字幕| 别揉我奶头~嗯~啊~动态视频 | 美女视频免费永久观看网站| 久久精品国产亚洲av高清一级| 免费av中文字幕在线| 一二三四在线观看免费中文在| 午夜福利,免费看| 欧美人与性动交α欧美精品济南到| 午夜免费鲁丝| 亚洲av成人不卡在线观看播放网 | 女人精品久久久久毛片| 女性被躁到高潮视频| 波多野结衣av一区二区av| cao死你这个sao货| 50天的宝宝边吃奶边哭怎么回事| 日本五十路高清| 老司机影院毛片| 久久久久视频综合| 亚洲欧美中文字幕日韩二区| 欧美激情 高清一区二区三区| 久久精品久久久久久噜噜老黄| 免费一级毛片在线播放高清视频 | 999精品在线视频| 视频区欧美日本亚洲| 十分钟在线观看高清视频www| 热99国产精品久久久久久7| 国产淫语在线视频| 久久精品亚洲av国产电影网| 一级毛片女人18水好多 | 中文精品一卡2卡3卡4更新| 老司机在亚洲福利影院| 欧美激情 高清一区二区三区| 人人妻人人澡人人看| 又黄又粗又硬又大视频| 国产主播在线观看一区二区 | 99久久人妻综合| 国产精品一区二区在线观看99| 久久99一区二区三区| 欧美激情高清一区二区三区| 人体艺术视频欧美日本| 国产精品99久久99久久久不卡| 中文字幕色久视频| 99久久精品国产亚洲精品| 中文精品一卡2卡3卡4更新| 99热网站在线观看| 午夜久久久在线观看| 777久久人妻少妇嫩草av网站| 黄片小视频在线播放| 精品熟女少妇八av免费久了| 无限看片的www在线观看| 日韩精品免费视频一区二区三区| 久久精品久久久久久噜噜老黄| 欧美日韩国产mv在线观看视频| 日本91视频免费播放| 大型av网站在线播放| 成人影院久久| 丝袜喷水一区| 制服诱惑二区| 老司机影院成人| 天天躁日日躁夜夜躁夜夜| av在线播放精品| 国产高清国产精品国产三级| 99香蕉大伊视频| 日韩av在线免费看完整版不卡| 成人手机av| 亚洲精品日韩在线中文字幕| 少妇人妻久久综合中文| 欧美少妇被猛烈插入视频| 日日摸夜夜添夜夜爱| 97精品久久久久久久久久精品| av在线app专区| 深夜精品福利| 欧美在线一区亚洲| 国产成人精品久久二区二区91| 天天添夜夜摸| 久久99一区二区三区| 在线av久久热| 亚洲欧洲精品一区二区精品久久久| 色播在线永久视频| 蜜桃在线观看..| 免费看十八禁软件| 少妇的丰满在线观看| 亚洲成人手机| 我要看黄色一级片免费的| 国产免费一区二区三区四区乱码| av在线播放精品| 国产老妇伦熟女老妇高清| 午夜精品国产一区二区电影| 在线观看一区二区三区激情| 国产亚洲av片在线观看秒播厂| 国产不卡av网站在线观看| 亚洲七黄色美女视频| 精品熟女少妇八av免费久了| 高潮久久久久久久久久久不卡| 国产精品99久久99久久久不卡| 97人妻天天添夜夜摸| 久久精品国产综合久久久| 亚洲精品av麻豆狂野| 老司机在亚洲福利影院| 天天躁夜夜躁狠狠躁躁| 国产91精品成人一区二区三区 | 亚洲 国产 在线| 纵有疾风起免费观看全集完整版| 成人影院久久| 一二三四在线观看免费中文在| 精品亚洲乱码少妇综合久久| 亚洲 国产 在线| 少妇 在线观看| 秋霞在线观看毛片| 青春草视频在线免费观看| 亚洲精品一二三| cao死你这个sao货| 久久久国产一区二区| www日本在线高清视频| 在线观看www视频免费| 9热在线视频观看99| 成年人午夜在线观看视频| 国产视频一区二区在线看| 嫩草影视91久久| 成年动漫av网址| 国产成人影院久久av| 久久久久精品国产欧美久久久 | 国产一区有黄有色的免费视频| 又紧又爽又黄一区二区| 水蜜桃什么品种好| 秋霞在线观看毛片| 国产精品麻豆人妻色哟哟久久| 免费高清在线观看日韩| 日本a在线网址| 国产有黄有色有爽视频| 国产成人精品久久二区二区91| 一级,二级,三级黄色视频| 亚洲国产av新网站| 9色porny在线观看| 国产又爽黄色视频| 日本色播在线视频| 一级黄色大片毛片| 久久中文字幕一级| 免费在线观看日本一区| 国产日韩欧美在线精品| 国产精品偷伦视频观看了| 人人澡人人妻人| 亚洲专区国产一区二区| 国产在线观看jvid| 午夜免费男女啪啪视频观看| 美女视频免费永久观看网站| 天堂俺去俺来也www色官网| 精品亚洲成a人片在线观看| 考比视频在线观看| 亚洲欧美一区二区三区黑人| 欧美日韩一级在线毛片| 激情五月婷婷亚洲| 国产精品一区二区免费欧美 | 欧美成狂野欧美在线观看| 婷婷色麻豆天堂久久| 日韩av在线免费看完整版不卡| av一本久久久久| 国产爽快片一区二区三区| 亚洲欧美精品自产自拍| 国产1区2区3区精品| 久久狼人影院| 久久精品久久久久久噜噜老黄| 王馨瑶露胸无遮挡在线观看| av天堂在线播放| 国产精品一区二区在线观看99| 国产黄频视频在线观看| 国产精品一国产av| 日本午夜av视频| 男女边吃奶边做爰视频| 老司机影院成人| 国产在线观看jvid| videosex国产| bbb黄色大片| 久久国产精品影院| 视频区欧美日本亚洲| 在线av久久热| 国产片特级美女逼逼视频| 十八禁高潮呻吟视频| 国产又色又爽无遮挡免| 午夜免费观看性视频| 久久国产精品男人的天堂亚洲| 人妻一区二区av| 欧美日韩视频精品一区| 91麻豆av在线| 夜夜骑夜夜射夜夜干| 久久国产精品男人的天堂亚洲| 99精品久久久久人妻精品| 狂野欧美激情性bbbbbb| 男女下面插进去视频免费观看| 欧美精品av麻豆av| 久久精品久久久久久久性| 久久久欧美国产精品| 黄色视频不卡| 成在线人永久免费视频| 2018国产大陆天天弄谢| 国产精品一区二区精品视频观看| 国产亚洲精品久久久久5区| 啦啦啦在线免费观看视频4| videos熟女内射| 男女免费视频国产| 大码成人一级视频| 女性被躁到高潮视频| 日韩视频在线欧美| 国产有黄有色有爽视频| 青草久久国产| 亚洲国产av新网站| 少妇的丰满在线观看| 国产免费一区二区三区四区乱码| 老熟女久久久| 国产一区二区三区综合在线观看| 香蕉国产在线看| 丰满少妇做爰视频| 成年人免费黄色播放视频| 亚洲欧洲日产国产| 丝袜喷水一区| 国产精品秋霞免费鲁丝片| 国产精品久久久久成人av| 久久久国产欧美日韩av| 99精国产麻豆久久婷婷| 波多野结衣一区麻豆| 69精品国产乱码久久久| 女人精品久久久久毛片| 国产精品三级大全| 夜夜骑夜夜射夜夜干| 狠狠精品人妻久久久久久综合| 亚洲视频免费观看视频| 久久久精品国产亚洲av高清涩受| 999久久久国产精品视频| 99精国产麻豆久久婷婷| 国产成人啪精品午夜网站| 在线 av 中文字幕| 国产xxxxx性猛交| 亚洲成人国产一区在线观看 | 天天操日日干夜夜撸| 成人国语在线视频| xxxhd国产人妻xxx| 欧美成人精品欧美一级黄| 丝袜人妻中文字幕| 水蜜桃什么品种好| 老鸭窝网址在线观看| av不卡在线播放| 国产av一区二区精品久久| 国产亚洲精品久久久久5区| 日本vs欧美在线观看视频| 丰满少妇做爰视频| 2021少妇久久久久久久久久久| 悠悠久久av| 日本欧美视频一区| www.av在线官网国产| 亚洲一码二码三码区别大吗| 久久ye,这里只有精品| 老司机靠b影院| 欧美日韩亚洲综合一区二区三区_| 中文精品一卡2卡3卡4更新| 一本久久精品| 中文字幕亚洲精品专区| 黄频高清免费视频| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久久精品精品| 狂野欧美激情性bbbbbb| 青春草视频在线免费观看| 母亲3免费完整高清在线观看| 欧美中文综合在线视频| 2018国产大陆天天弄谢| 欧美日韩国产mv在线观看视频| av视频免费观看在线观看| 久久人人爽av亚洲精品天堂| 一本色道久久久久久精品综合| 七月丁香在线播放| 久久性视频一级片| 欧美日韩综合久久久久久| 欧美日韩视频精品一区| 多毛熟女@视频| 一本大道久久a久久精品| 91九色精品人成在线观看| 亚洲国产精品成人久久小说| 欧美97在线视频| 日韩大码丰满熟妇| 一本久久精品| 久久久国产精品麻豆| 91老司机精品| 久热这里只有精品99| 又粗又硬又长又爽又黄的视频| 国产野战对白在线观看| bbb黄色大片| 丰满饥渴人妻一区二区三| 亚洲精品自拍成人| 久热爱精品视频在线9| 大话2 男鬼变身卡| 五月天丁香电影| 中文字幕人妻丝袜制服| 中文字幕精品免费在线观看视频| 少妇裸体淫交视频免费看高清 | 九色亚洲精品在线播放| 日韩av在线免费看完整版不卡| 久热爱精品视频在线9| 1024视频免费在线观看| 99热全是精品| 久久精品亚洲av国产电影网| 免费看av在线观看网站| 一区在线观看完整版| 国产成人欧美| 一级毛片黄色毛片免费观看视频| 国产精品三级大全| 两个人看的免费小视频| 美女脱内裤让男人舔精品视频| 亚洲国产欧美在线一区| 精品福利观看| 久久鲁丝午夜福利片| 色综合欧美亚洲国产小说| 国产精品国产三级国产专区5o| 少妇裸体淫交视频免费看高清 | 老司机深夜福利视频在线观看 | 黑人巨大精品欧美一区二区蜜桃| 亚洲av日韩在线播放| 国产av国产精品国产| 欧美av亚洲av综合av国产av| 国产福利在线免费观看视频| 十分钟在线观看高清视频www| 丰满迷人的少妇在线观看| 男人添女人高潮全过程视频| 国产成人啪精品午夜网站| 国产免费又黄又爽又色| 国产亚洲欧美精品永久| 天天影视国产精品| 高清av免费在线| avwww免费| 欧美中文综合在线视频| 久久久欧美国产精品| 久久久久精品国产欧美久久久 | 久久毛片免费看一区二区三区| 黑人猛操日本美女一级片| 亚洲人成网站在线观看播放| 精品一区二区三区av网在线观看 | 热re99久久精品国产66热6| 成年美女黄网站色视频大全免费| av不卡在线播放| 国产免费福利视频在线观看| 9热在线视频观看99| 母亲3免费完整高清在线观看| 九色亚洲精品在线播放| 欧美精品一区二区免费开放| tube8黄色片| 成年女人毛片免费观看观看9 | 亚洲国产av新网站| 丝袜喷水一区| 熟女少妇亚洲综合色aaa.| 精品一品国产午夜福利视频| 激情五月婷婷亚洲| 蜜桃在线观看..| 黑人欧美特级aaaaaa片| 女性生殖器流出的白浆| 99九九在线精品视频| 99国产综合亚洲精品| 欧美人与性动交α欧美软件| 久久久久久久久久久久大奶| 亚洲精品在线美女| 99热国产这里只有精品6| 亚洲图色成人| 可以免费在线观看a视频的电影网站| 一个人免费看片子| svipshipincom国产片| 国产伦理片在线播放av一区| 国产99久久九九免费精品| 女人久久www免费人成看片| 99久久99久久久精品蜜桃| 国产熟女欧美一区二区| 美女国产高潮福利片在线看| 久久久亚洲精品成人影院| 久久精品久久久久久久性| 亚洲一卡2卡3卡4卡5卡精品中文| 99久久人妻综合| 亚洲av男天堂| 日韩电影二区| 精品第一国产精品| 成人亚洲精品一区在线观看| 欧美人与性动交α欧美软件| 十八禁人妻一区二区| 久久久久久久大尺度免费视频| 色婷婷av一区二区三区视频| 国产真人三级小视频在线观看| 男女边吃奶边做爰视频| 国产成人一区二区在线| 热re99久久国产66热| 欧美日韩综合久久久久久| 亚洲午夜精品一区,二区,三区| 嫁个100分男人电影在线观看 | 欧美黄色淫秽网站| avwww免费| 天堂8中文在线网| 女人久久www免费人成看片| 我要看黄色一级片免费的| 国产成人精品久久久久久| 777久久人妻少妇嫩草av网站| 久久免费观看电影| 亚洲三区欧美一区| 波多野结衣一区麻豆| av线在线观看网站| 91麻豆av在线| a级片在线免费高清观看视频| 亚洲情色 制服丝袜| 性高湖久久久久久久久免费观看| 欧美精品啪啪一区二区三区 | 久9热在线精品视频| 亚洲国产毛片av蜜桃av| 在线观看国产h片| 黄色视频不卡| 在现免费观看毛片| 嫁个100分男人电影在线观看 | 亚洲国产中文字幕在线视频| 久久亚洲国产成人精品v| 久久 成人 亚洲| 国产亚洲精品久久久久5区| 国产精品一区二区精品视频观看| 国产精品一国产av| 男女午夜视频在线观看| 激情五月婷婷亚洲| 亚洲成色77777| 欧美 亚洲 国产 日韩一| 男女边摸边吃奶| 婷婷成人精品国产| 女人精品久久久久毛片| 午夜免费男女啪啪视频观看| 精品国产一区二区久久| 日韩精品免费视频一区二区三区| 国产有黄有色有爽视频| 一区二区三区激情视频| 爱豆传媒免费全集在线观看| 高清视频免费观看一区二区| 亚洲精品国产av成人精品| 中文欧美无线码| 精品亚洲成国产av| 欧美久久黑人一区二区| 欧美日韩亚洲综合一区二区三区_| 久久人人爽人人片av| 精品熟女少妇八av免费久了| 日本欧美视频一区| 国产日韩一区二区三区精品不卡| 视频区欧美日本亚洲| 亚洲欧美精品综合一区二区三区| 国产国语露脸激情在线看| 午夜免费观看性视频| 日日摸夜夜添夜夜爱| 精品福利永久在线观看| 999久久久国产精品视频| 欧美少妇被猛烈插入视频| 久久精品人人爽人人爽视色| 一边摸一边做爽爽视频免费| 亚洲av男天堂| 99国产精品免费福利视频| 超碰成人久久| 日韩伦理黄色片| 午夜福利乱码中文字幕| 热re99久久国产66热| 日韩一本色道免费dvd| 亚洲专区中文字幕在线| 免费久久久久久久精品成人欧美视频| 黄色一级大片看看| 脱女人内裤的视频| 日韩,欧美,国产一区二区三区| 久久久国产一区二区| 激情五月婷婷亚洲| 精品亚洲成a人片在线观看| 菩萨蛮人人尽说江南好唐韦庄| 欧美日韩黄片免| 欧美日韩视频精品一区| 亚洲图色成人| 亚洲成国产人片在线观看| 国产精品麻豆人妻色哟哟久久| 亚洲精品乱久久久久久| 少妇精品久久久久久久| 啦啦啦在线观看免费高清www| 99久久人妻综合| 日本色播在线视频| 9热在线视频观看99| 国产三级黄色录像| 国产成人一区二区三区免费视频网站 | 中国美女看黄片| 水蜜桃什么品种好| 精品一区二区三区四区五区乱码 | 国产精品成人在线| 999精品在线视频| 91麻豆av在线| 亚洲第一青青草原| 亚洲成人手机| 一区二区三区精品91| 老司机靠b影院| 国产精品 欧美亚洲| 亚洲男人天堂网一区| 中文乱码字字幕精品一区二区三区| 国产精品久久久久久人妻精品电影 | 男女边摸边吃奶| 免费黄频网站在线观看国产| 美女扒开内裤让男人捅视频| 久久国产精品大桥未久av|