• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Chemical stability,thermal behavior,and shelf life assessment of extruded modified double-base propellants

    2018-03-12 08:03:15SherifElbasuneyAhmedFahdHosamMostafaSherifMostafaRamySadek
    Defence Technology 2018年1期
    關(guān)鍵詞:顆粒飼料技術(shù)參數(shù)社會(huì)效益

    Sherif Elbasuney,Ahmed Fahd,Hosam E.Mostafa,Sherif F.Mostafa,Ramy Sadek

    School of Chemical Engineering,Military Technical College,Kobry El-Kobba,Cairo,Egypt

    1.Introduction

    Modified double base(MDB)propellants have found wide applications in modern military and space rocketry,in view of their superior performance[1,2].It is well known that MDB propellants are evolved from double-base by integrating energetic fillers such as HMX or RDX.There is also another trend to integrate potential oxidizers such as ammonium perchlorate(AP),as well as active metal fuels such as aluminum,magnesium,and boron[3-6].This is why MDB propellants have recently been used in booster,sustainer,and dual thrust rocket motors[7-9].

    MDB can exhibit a wide range of burning rate up to 40 mm/s;specific impulse can also be varied from 220 to 270 s[9-12].It has been reported that integration of stoichometric binary mixture of oxidizer-metal fuel(AP/Al),and energetic nitramine such as HMX offered a higher specific impulse(Fig.1)[9,13-15].

    MDB based on binary mixture of AP/Al and HMX offered higher specific impulse by 10%and 9%respectively compared with reference formulation[9].Stoichometric binary mixture of AP/Al had a dual effect by increasing the average operating pressure and burning rate[9].This action was ascribed to the gaseous decomposition nature of AP(Equation(1)),and the exothermic oxidation of Al metal fuel which could enhance the heat of combustion,and flame temperature[1,2,7,16].

    Aluminum metal fuel,with high exothermic heat of combustion(7.4 kcal/g)and excellent thermal conductivity values,tended to increase the burning rate[7,17,18].Aluminum particles are able to react not only with free oxygen resulted from oxidizer decomposition;but also it is able to react with inert decomposition gaseous products and add much more heat to the combustion process[18-20].

    The great impact of HMX on ballistic performance was attributed to the positive heat of formation(+353.8 kJ/kg).HMX is a highly effective explosive material with heat of explosion 6197 kJ/kg and gaseous product of 902 L/kg[13].HMX also has a slightly negative oxygen balance which means decomposition products of low molecular weight[13,21].Much research has been directed toward the development of MDB propellants with enhanced combustion characteristics and high specific impulse[22-25].However less attention has been directed to investigate the impact of different energetic additives on chemical stability,thermal behavior,and shelf life[26].

    1.1.Chemical stability of MDB propellants

    The nitrate esters(nitrocellulose&nitroglycerine),the main constituents of double-base propellant,are molecules that aren't chemically stable.Their decomposition is slow in ambient conditions of temperature,pressure,and humidity.In severe environments,the chemical decomposition becomes autocatalytic[11].There are many mechanisms through which chemical decomposition can occur;these mechanisms include:

    1.1.1.Chain reactions

    Chain reactions start with the homolytic breaking of the weak O-NO2bond,forming nitrogen dioxide and the corresponding alkoxyl radical[27-29].These reactive free radicals immediately undergo consecutive reactions with nearby nitrate ester molecules[29].

    1.1.2.Saponification(hydrolysis)

    Another main decomposition pathway is the neutral to acid hydrolysis of the nitrate esters[28].This reaction is catalyzed by moisture and residual acids(which weren't fully removed after nitrate ester synthesis),or by water,or by acids formed during decomposition(Equation(3)).

    A further decomposition reaction is the “enhanced hydrolysis”.This reaction was found to have low activation energy of 71 kJ/mol.Therefore it can be a dominant decomposition reaction at lower temperatures[30].

    1.1.3.Auto-catalytic reactions

    Decomposition products of reactions(2)can further transformed in presence of moisture and oxygen as follow

    Whereas the primary homolytic reaction(2)can't be suppressed,the consecutive reactions(3-6)can be slowed down nearly to zero by binding or elimination of acids,nitric oxides,and water from the system.This fact was employed for the stabilization of double-base propellants by integrating stabilizing agents[30,31].Stabilizers fulfill their purpose by reacting with the nitrogen oxides and neutralize the decomposition products[32].Conventional double-base propellants,with proper percentage of stabilizer,can offer a safe chemical life of at least 20 years[33].For modified systems containing energetic solid additives similar shelf life should be secured[34].A number of studies have been carried out on the thermal stability of MDB propellants[35-38].Complete information regarding the influence of high energy ingredients including(in organic oxidizers/high explosives)on MDB propellant stability and shelf life is vital in regards of their handling,processing,transportation,and storage.

    1.2.Impact of different energetic additives on chemical stability

    AP has a great impact on the degradation of propellants containing nitrate esters.Many researchers have studied the rate of stabilizer depletion and the time to ignition of such propellants[39].Asthana,Divekar et al.investigated the stability,auto ignition,and stabilizer depletion of MDB propellants containing NG and AP[40].It was noted that the inclusion of AP increased the autocatalytic behavior of MDB propellants over time[41].MDB based on AP demonstrated ease of ignition suggesting faster decomposition kinetics[42].AP-MDB propellants possess shorter shelf life than their conventional counterparts[40,43].Further research showed that MDB containing AP and NG exhibited less stability than conventional double-base[44].However,nitramine doublebase propellants exhibited relatively good thermalstability[45-49].This paper is devoted to investigate the effect of binary mixture of oxidizer/metal fuel(AP/Al)and energetic nitramine(HMX)on DB chemical stability,thermal behavior,as well as shelf life assessment.MDB formulation based on HMX demonstrated extended service life of 16 years compared to(AP/Al)-MDB which demonstrated 9 years.DSC outcomes demonstrated an increase in heat released with aging time.The released heat was increased by 31,41,and 25%for reference,(AP/Al)-MDB,and HMX-MDB formulations respectively.This thermal behavior was ascribed to the auto-catalytic thermal degradation over artificial aging.Correlation between the increase in heat released and the evolved nitrogen oxides was conducted.

    2.Experimental

    2.1.Manufacture of MDB formulations

    Screw extrusion technique emphasizes mixing of different ingredients to ensure good homogenization,high density,and dimensional stability.This technique included many stages such as blending,followed by rolling,grinding,granulation,and finally extrusion to obtain grains of desired shape and dimensions[50].Different MDB formulations based on stoichiometric binary mixture(AP/Al),and HMX at 10 wt%solid loading level,were manufactured by screw extrusion.

    2.2.Chemical stability of MDB

    Evaluation of chemical stability,deals with the fact that the rate of decomposition at normal temperature is judged from decomposition at higher temperature[51,52].Quantitative stability tests were employed for fast and reliable evaluation of MDB chemical stability;they were devoted to the direct measurement of evolved gasses[53].The most commonly used quantitative stability tests are Bergmann-Junk test,and Vacuum stability test.

    2.2.1.Bergmann-Junk test

    Bergmann-Junk test is the main quantitative test for DB stability evaluation.In this test,5g of the tested sample was heated at 120°C for 5 h.The evolved nitrogen oxides(NOx)were entrapped in a secondary tube containing 50 ml of de-ionized water.The evolved NOx gases were quantitatively determined by titration using potassium iodide solution.The acceptable limit for Bergmann-Junk test is 10 ml of NOx/5 g sample[23,54].

    Vacuum stability test is a controlling,measuring,enabling evaluation of temperature stability from measurements of evolved gases from tested sample during long term isothermal heating.This test was performed according to STANAG 4556,where 1 g of the sample was heated at 90°C for 40 h with pressure measurement reading each 1 min during the isothermal heating process.

    2.3.Thermal behavior of MDB

    Ignition temperature is one of the main important characteristics which need to be evaluated for developed MDB formulation,in an attempt to evaluate the impact of different energetic constituents on MDB heat sensitivity.A sample of 0.1 g was introduced in a glass tube and heated at controlled rate of 5°C/min till ignition[32].Phase change with temperature,onset decomposition temperature,and heat released upon combustion are the main parameters for MDB thermal stability evaluation.Differential scanning calorimetry(DSC)measures heat flow associated with phase changes(i.e.melting),endothermic/exothermic decomposition as a function of temperature or time.DSC measurements were performed using DSC 2920 by TA instruments.2 mg of MDB propellants were heated up to 300°C at 5°C/min,under nitrogen gas flow at 5 ml/min.

    2.4.Artificial aging

    Artificial aging was conducted in an attempt to reduce the time scale by storing the propellant at elevated temperatures so that prediction of service life can be made in shorter times.It facilitates the planning of time-temperature profile of MDB with limited knowledge about their degradation behavior[55].Artificial aging was performed by isothermal heating at 80°C in temperature controlled oven under ambient atmospheric conditions.The developed MDB formulations were stored under isothermal heating for 4,8,14 and 28 days[56].Consequently safe storagelife of the propellant can be predicted[56].

    2.5.Shelf life assessment of MDB

    Van't Hoff's formula(Equation(7))enabled the estimation of inservice periods at given in-storage temperatures,from the equivalent time-temperature loads during the artificial ageing.Van't Hoff's formula has been proved by experience to be suitable to establish the time-temperature profile[57].

    Where:TE,TT,F,and ΔTFare time in years at the in-service temperature(TEin0C),test time in days at the test temperature(TTin0C),reaction rate change factor per 10°C of temperature change(Fusually between 2 and 4),and temperature interval for actual valueFrespectively.Factor F was determined using Arrhenius Equation(8)[57].

    Where,Eais the activation energy(kJ/mol),andRis the ideal gas constant[55].Ffactor was deduced by compiling and comparing reaction rates obtained at different temperatures[55].The range for this factor is often between 2 and 4[57].Table 1 demonstrates the accelerated ageing conditions simulating an in-use time up to 32 years at 25°C for developed MDB propellants.

    The change in chemical stability of aged MDB was tracked by quantifying the evolved NOx gases with aging time.Their thermal behavior was investigated and quantified using DSC.Novel correlation between chemical stability(volume of evolved NOx gases)and thermal behavior(Heat released)was represented.

    3.Results and discussions

    3.1.Chemical stability of MDB

    The volume of nitrogen oxides evolved from freshly manufactured MDB compositions was quantified using Bergman-Junk test.The quantified NOxare listed in Table 2.

    總之,正確的水分調(diào)控對(duì)于高效、低耗地制作優(yōu)質(zhì)硬顆粒飼料具有重要作用。在實(shí)際生產(chǎn)中,由于各企業(yè)顆粒飼料產(chǎn)品的配方組成不同、原料質(zhì)量的變異、加工環(huán)境、生產(chǎn)設(shè)備、蒸汽條件等的不同或客戶的需要不同,都會(huì)對(duì)水分的調(diào)控技術(shù)參數(shù)提出不同要求。因此,飼料企業(yè)應(yīng)重視硬顆粒飼料加工技術(shù)的研究與創(chuàng)新,通過加工參數(shù)的優(yōu)化研究,獲得實(shí)現(xiàn)加工優(yōu)質(zhì)顆粒飼料的最佳參數(shù)組合,并將這些參數(shù)組合作為生產(chǎn)中的控制標(biāo)準(zhǔn),只有這樣,才能使企業(yè)和用戶獲得最佳經(jīng)濟(jì)與社會(huì)效益。

    The volume of NOxevolved from reference DB and MDB formulations were within the acceptable limits(10 ml of NOx/5 g sample)[54].HMX based formulation exhibited similar value of evolved NOxto reference.This indicated that HMX is compatible with double base constituents;no side chemical reactions could take place.However AP based formulation exhibited the largest volume of evolved NOxgases.This was attributed to the reactivity of AP oxidizer to react with nitroglycerine to form perchloric acid[30,58].Vacuum stability test represents a fast way of chemical stability determination.Results from vacuum stability test for freshly manufactured MDB propellants are listed in Table 3.The evolved NOx confirmed the obtained data from Berman-Junk test.

    3.2.Thermal behavior of MDB

    Ignition temperature test was conducted to measure the temperature of spontaneous ignition by progressive heating.Even though,MDB formulation exhibited an increase in heat released during exothermic decomposition,there was no dramatic change inignition temperature.The ignition temperature for reference,AP/Al-MDB,and HMX-MDB was found to be 171,172,170°C respectively.DSC was employed to monitor any chemical/physical changes which involve the evolution/absorption of heat.The total heat released,the maximum decomposition temperature,and the onset decomposition temperature were measured and evaluated using DSC(Fig.2).

    Table 1Ageing times calculated on the basis of thermal equivalent load at TE=25°C using the generalized Van't Hoff's rule with factor F=3.

    All Formulations demonstrated one exothermic decomposition peak.Energetic additives did not greatly affect the maximum decomposition temperature but they positively impact the total heat released upon combustion.Summary of total heat released(J/g)and maximum peak temperature(°C)are tabulated in Table 4.

    The inclusion different energetic additives including binary mixture of AP/Al,and HMX into DB propellants increased the released heat upon decomposition due to the favorable heat added by these modifiers.Formulation 2 based on HMX exhibited the highest released heat.This was ascribed to the fact that HMX decomposes with the release of large amount of heat 6197 J/g.

    Table 2Quantified NOxgases evolved from freshly manufactured MDB using Bergmann-Junk test.

    Table 3Vacuum stability test results of freshly developed MDB.

    3.3.Shelf life assessment

    The developed MDB were isothermally aged at 80°C for different periods.The increase in evolved NOxoxides was quantified with aging time and shelf life prediction using Bergman-Junk test(Table 5).

    Results demonstrated that AP based formulation demonstrated the least chemical stability.This behavior was attributed to the fact that AP can degrade to form perchloric acid;which could cause rapid hydrolysis of the nitrate ester.This degradation action could accelerate the propellant decomposition(Equations(9)-(12))[30,45,58].

    MDB propellants based on HMX revealed stability similar to reference formulation.This was ascribed to the high thermal stability of HMX.Furthermore,no side reactions could take place between HMX and DB constituents.Quantification of evolved NOx gases with aging time was performed using vacuum stability test(Table 6).Vacuum stability test outcomes confirmed the findings of Bergmann-Junk test.

    There was an increase in volume of evolved NOxwith aging time.The volume of evolved NOx gases from HMX-MDB was higher than reference formulation but lower than AP-MDB.HMX-MDB and reference formulation exhibited similar shelf life of at least 16 years.On the other hand MDB based on binary mixture of AP/Al exhibited shelf life of 9 years.This was attributed to the induced catalytic degradation upon inclusion of AP with the formation of perchloric acid.

    3.4.Thermal behavior of aged MDB

    MDB demonstrated a decrease in ignition temperature with isothermal aging time(Table 7).

    It is clear that sensitivity to heat of different MDB formulations increased with aging.This behavior was ascribed to the decrease in the required activation energy to start the chemical conversion[34].HMX based formulation demonstrated the highest thermalstability;this was attributed to the fact that higher energy is required for the activation of HMX compared with AP[13].The thermal behavior of aged MDB after aging period of 14 days were investigated with DSC to that of freshly manufactured formulation.DSC thermograms of aged MDB formulations ensured the findings of Bergman-Junk and Vacuum stability tests.The main findings from DSC thermograms included:shifting of maximum decomposition peak temperature to lower value,and an increase in total heat released with aging.Figs.3-5 demonstrate the DSC thermograms for fresh and aged formulations.

    Table 4Thermal behavior characteristics of fresh manufactured MDB.

    All investigated MDB formulations exhibited similar thermal behavior with aging.This behavior encompasses an increase in heatreleased as well as a decrease in the temperature at maximum heat released.This thermal behavior was ascribed to the degradation of MDB over aging.MDB propellants could degrade by thermal decomposition of NC and NG,which might start with the homolytic breakdown of the O-NO2bond[55].This reaction might be catalyzed by moisture and residual acids formed as products during the decomposition process[55].Table 8 summarized the increase in total heat released of aged formulations,to fresh manufactured formulations.

    Table 5Bergmann-Junk test results after aging at 80°C.

    Table 6Quantification of NOxwith aging using vacuum stability test.

    Table 7Ignition temperature for aged MDBP.

    DSC out comes ensured the findings of Bergmann-Junk and Vacuum stability tests.The total heat released was increased by 31,41 and 25%for reference formulation,binary mixture of(AP&Al),and HMX respectively.HMX based formulation demonstrated superior thermal stability.This behavior was attributed to the great consumption of heat energy for the activation of HMX compared to AP,as well as the reactivity of AP toward NG.

    Table 8The increase in heat released with isothermal aging time.

    4.Conclusion

    MDB based on HMX exhibited good chemical and thermal stabilities using quantitative chemical stability tests and DSC respectively.MDB based on HMX exhibited service life of 16 years,similar to reference formulation.MDB based on AP demonstrated service life of 9 years.Low service life of MDB based on AP was ascribed to the reactivity of AP towards NG with the formation of perchloric acid.All MDB formulations exhibited an increase in evolved NOx,and total heat released with aging time.The increase in heat released by 31%was found to be equivalent to evolved NOxgases of 6.2 cm3/5 g and 2.5 cm3/1 g for Bergman-Junk,and Vacuum stability test respectively.These values should not be exceeded for safe storage.This manuscript shaded the light on HMX which offered MDB with balanced ballistic performance,thermal and chemical stability,as well as extended service life.

    [1]Sadek R,Kassem M,Abdo M,Elbasuney S.Spectrally adapted red flare tracers with superior spectral performance.Def Technol 2017:1-7.

    [2]Sadek R,Kassem M,Abdo M,Elbasuney S.Novel yellow colored flame compositions with superior spectral performance.Def Technol 2017;13(1):33-9.

    [3]Meda L,G.L.M.,Braglia R,Abis L,Gallo R,Severini F,et al.A wide characterization of aluminum powders for propellants.In:Proceedings of the 9-IWCP,novel energetic materials and applications,grafiche g.s.s,Bergamo;November 2004.

    [4]Yetter Richard A,G.A.R.,Son Steven F.Metal particle combustion and nanotechnology.In:Proceedings of the combustion institute,32;2009.

    [5]Han X,W.T.,Lin ZK,Han DL,Li SF,Zhao FQ,et al.RDX/AP-CMDB propellants containing fullerenes and carbon black additives.Def Sci J 2009;59:284-9.

    [6]Elbasuney S,Fahd A,Mostafa HE.Combustion characteristics of extruded double base propellant based on ammonium perchlorate/aluminum binary mixture.Fuel 2017;208:296-304.

    [7]Mocella JACCJ.Chemistry of pyrotechnics,basic principles and theory.USA:Taylor&Francis Group,an informa business;2010.p.60-96.

    [8]Davenas A.Solid rocket propulsion technology.Elsevier Science;2012.

    [9]Fahd A,Mostafa HE,Elbasuney S.Certain ballistic performance and thermal properties evaluation for extruded modified double-base propellants.Central Eur J Energ Mater 2017;14(3).

    [10]CS,D.,Ultra-ultrahigh burning rate composite modified double-base propellants containing porous ammonium perchlorate.1990.

    [11]Davenas A.Solid rocket Motor Design.Progress in Astronautics and Aeronautics,AIAA.;1996.

    [12]Sutton GPB,O.Solid propellants.In:Rocket propulsion elements.Wiley;2011.p.475-512.

    [13]Gautarn GK,S.M.P.,Joshi AD,Mulage KS,Singh SN.Study of energetic nitramine extruded double-base propellants.Def Sci J 1998;48(2).

    [14]A,Z.,HMX and RDX:combustion mechanism and influence on modern double-base propellant combustion.J Propuls Power,1995.

    [15]Elbasuney S,Fahd A,Mostafa HE.Combustion characteristics of extruded double base propellant based on ammonium perchlorate/aluminum binary mixture.Fuel 2017;208(Supplement C):296-304.

    [16]Mohamed AK,Mostafa HE,Elbasuney S.Nanoscopic fuel-rich thermobaric formulations:chemical composition optimization and sustained secondary combustion shock wave modulation.J Hazard Mater 2016;301:492-503.

    [17]Mohamed AK,Mostafa HE,Elbasuney S.Nanoscopic fuel-rich thermobaric formulations:chemical composition optimization and sustained secondary combustion shock wave modulation.J Hazard Mater 2016;301:492-503.

    [18]Elbasuney S,Elsaidy A,Kassem M,Tantawy H.Stabilized super-thermite colloids:a new generation of advanced highly energetic materials.Appl Surf Sci 2017;419:328-36.

    [19]Meyer R,J.K.,Homburg A.Explosives.Sixth Edition ed.sixth ed.Weinheim:Wiley-VCH&Co.KGaA;2007.

    [20]Yaman Hayri,Ercan Degˇirmenci V?.Experimental investigation of the factors affecting the burning rate of solid rocket propellants.Fuel 2014;115:794-803.

    [21]Mocella JACCJ.Chemistry of pyrotechnics,basic principles and theory.USA:Taylor&Francis Group,an informa business;2010.

    [22]CS.,D.,Ultra-ultrahigh burning rate composite modified double-base propellants containing porous ammonium perchlorate.1990.

    [23]Meyer R,Kohler J,Homburg A,editors.Explosives.sixth ed.Weinheim:Wiley;2007.

    [24]Cohen-NIr.Combustion characteristics of advanced nitramine-based propellants.Int Symp Combust 1991;18:195-205.

    [25]Kubota N.Survey of rocket propellants and the combustion characteristics.Fundam Solid Propellant Combust 1984.

    [26]Sutton GP,Biblarz O.Solid propellant rocket fundamentals(p 426-430).In:Rocket propulsion elements.Wiley;2011.p.426-30.

    [27]G.B.Manelis,G.M.N.,Y.I.Rubtsov,V.A.Strunin,Thermal decomposition and combustion of explosives and propellants.

    [28]Albrecht,G.,Milit¨artechnik,1987.5,267.

    [29]Bohn MA.The use of kinetic equations to evaluate the ageing behaviour of energetic materials-possible problems.In:11th symp.on chemical problems connected with the stability of explosives,Bastad;1998[Sweden].

    [30]Manelis GB.In:Francis T,editor.Thermal decomposition and combustion of explosives and propellants;2003.p.210-5.

    [31]Vogelsanger B,B.O.,Schadeli U,Antenen D,Ryf K.Ballistic shelf life of propellants for medium and small calibre ammunition-influence of deterrent diffusion and nitrocellulose degradation.In:19th internafional symposium of ballisfics;2001.

    [32]Nobelkrut B.Analytical methods for powders and explosives.1974[Sweden].

    [33]Davenas A.Solid rocket propulsion technology.New York:Pergamon Press;1993.

    [34]Vogelsanger B.Chemical stability,compatibility and shelf life of explosives.2004.Chimia.

    [35]Hartman K-0,Musso RC.The thermal decomposition of nitroglycerine and its relation to the stability of CMDB propellants.CA:The Combustion Institute;1972.p.29.WSCI 72-30.

    [36]Elrick,D.E.,US Patent 3.1975.

    [37]S.W.Beckwith and H.B.Carroll,J.,Spacecraft Rockets,in Spacecraft Rockets,.1985.p.156-161.

    [38]Machida H,A.Y.,Sumikawa K,Suzuki N,Fukuda T,Sumi K,et al.In:Seventeenth int.Jahrestag Fraunhofer inst.Treib explosivst.,Karlsruhe;1986.

    [39]United States,O.T.A.C.,Disposal of chemical weapons:alternative technologies:DIANE Publishing.

    [40]Asthana SN,C.N.D,Singh H.J Hazard Mater 1989;21:35-46.

    [41]Guidelines for safe storage and handling of reactive materials.Wiley;2010.

    [42]Zukas JA,Walters W,Walters WP.Explosive effects and applications.New York:Springer;2002.

    [43]Bromberger CG,H.R.B.,Conduit CP,Howard AJ.The stability of colloidal propellants:Part 3:high impulse compositions.London,UK:Explosives Research Development Establishment;1960.

    [44]Conduit CP.The stability of colloidal propellants:Part 5:the rates of heat generation and critical charge sizes for a composite modified cast double-base propellants.London,UK:Explosives Research Development Establishment;1962.

    [45]Bunyan P.In:12th symposium on the chemical problems connected with the stability of explosives;2001[Sweden].

    [46]Teipel U.Energetic materials:particle processing and characterization.Wiley;2006.

    [47]Asthana SN,R.B.G.,Singh H.J Hazard Mater 1990;23:235-44.

    [48]Ruth Tunnell MA,Dale Roz,Tod Dave,Proud William G.Ammonium perchlorate,friend or Foe?Part 1:the influence of this antioxidizer on the aging behavior of propellant compositions.Propellants Explos Pyrotech 2010;35:1-7.

    [49]Bhalerao MM,G.K.G.,Subramanian GV,Singh SN.Nitramine double base propellants.Def Sci J 1996;46:207-14.

    [50]Lewis TJ.The effect of processing variations on the ballistics of fast burning extruded double base propellants.In:AIAA 14th joint propulsion conference;1978.

    [51]Yan Q-L,Li X-J,Wang Y.Combustion mechanism of double-base propellant containing nitrogen heterocyclic nitroamines(I):the effect of heat and mass transfer to the burning characteristics.Combust Flame 2009;156(3):633-41.

    [52]Huggins RA.Energy storage.US:Springer;2010.

    [53]Zihlman FA.Method of testing propellant stability.Google Patents;1960.

    [54]Frys O,P.B.,Eisner A,Skladal J,Ventura K.Utilization of new non-toxic substances as stabilizers for nitrocellulose-based propellants.Propell Explos Pyrotech 2011;23:22-9.

    [55]Djalal Trache aKK.Study on the influence of ageing on thermal decomposition of double-base propellants and prediction of their in-use time.Fire Mater 2013;37:328-36.

    [56]Jelisavac L.Life-time prediction of double-base propellants in accordance with Serbian and NATO standards.Sci Tech Rev 2010;60(1):12-8.

    [57]MA B.Prediction of equivalent time-temperature loads for accelerated ageing to simulate preset in-storage ageing and time-temperature profile loads.In:Proceeding of the 40th international annual conference of ICT;2009[Germany,Karlsruhe].

    [58]Lurie B,V.K.,Svetlov B.In:11th symposium on the chemical problems connected with the stability of explosives;1998.p.267-87.Sweden.

    猜你喜歡
    顆粒飼料技術(shù)參數(shù)社會(huì)效益
    青貯玉米顆粒飼料用于草魚飼養(yǎng)的初步探究
    新車技術(shù)參數(shù)
    新車技術(shù)參數(shù)
    烏蘭牧騎社會(huì)效益研究
    好刊社會(huì)效益高
    特別健康(2018年9期)2018-09-26 05:45:20
    車型技術(shù)參數(shù) 4 x 4 Vehicle Data List
    越玩越野(2016年2期)2016-12-26 04:02:14
    利用顆粒飼料養(yǎng)魚好處多
    快速檢測方法在顆粒飼料淀粉糊化度中的應(yīng)用
    論股票價(jià)格準(zhǔn)確性的社會(huì)效益
    春蠶1~2齡顆粒飼料育試驗(yàn)初報(bào)
    人妻久久中文字幕网| 国产一区二区在线观看日韩| 国产亚洲91精品色在线| 中国美女看黄片| 秋霞在线观看毛片| 在线国产一区二区在线| 一进一出抽搐gif免费好疼| 日本 av在线| 91久久精品国产一区二区三区| 免费观看人在逋| 久久6这里有精品| 校园人妻丝袜中文字幕| 夜夜夜夜夜久久久久| 啦啦啦韩国在线观看视频| 变态另类成人亚洲欧美熟女| 亚洲成人中文字幕在线播放| а√天堂www在线а√下载| 久久久国产成人免费| 乱码一卡2卡4卡精品| 熟妇人妻久久中文字幕3abv| 99国产极品粉嫩在线观看| 哪里可以看免费的av片| 麻豆成人午夜福利视频| 亚洲人成网站高清观看| 亚洲电影在线观看av| 久久亚洲精品不卡| 91久久精品国产一区二区成人| 在线免费观看不下载黄p国产| 亚洲av成人精品一区久久| 亚洲成人av在线免费| 亚洲欧美日韩无卡精品| 超碰av人人做人人爽久久| 熟女人妻精品中文字幕| 午夜视频国产福利| 91久久精品电影网| 亚洲av免费在线观看| 美女内射精品一级片tv| 亚洲美女搞黄在线观看 | 精华霜和精华液先用哪个| 亚洲熟妇中文字幕五十中出| 在线免费十八禁| 精品人妻一区二区三区麻豆 | 色哟哟·www| 久久国内精品自在自线图片| 午夜精品一区二区三区免费看| av福利片在线观看| 免费av毛片视频| 岛国在线免费视频观看| 中文字幕免费在线视频6| 欧美+日韩+精品| 又粗又爽又猛毛片免费看| 十八禁网站免费在线| 国产成人影院久久av| 国内久久婷婷六月综合欲色啪| 免费看光身美女| av在线观看视频网站免费| 国产黄a三级三级三级人| 亚洲欧美清纯卡通| 国产成人a区在线观看| 你懂的网址亚洲精品在线观看 | 国产精品免费一区二区三区在线| 毛片女人毛片| 黄色欧美视频在线观看| 日本黄大片高清| 深夜精品福利| 午夜老司机福利剧场| 内地一区二区视频在线| .国产精品久久| 五月伊人婷婷丁香| 一区二区三区免费毛片| 亚洲人成网站高清观看| 国产成人精品久久久久久| 菩萨蛮人人尽说江南好唐韦庄 | 久久久久久九九精品二区国产| 久久人人爽人人爽人人片va| 亚洲人与动物交配视频| 18+在线观看网站| 在线观看av片永久免费下载| 国产一区二区亚洲精品在线观看| 51国产日韩欧美| 国产精品野战在线观看| 欧美又色又爽又黄视频| 乱人视频在线观看| 啦啦啦啦在线视频资源| 亚洲av五月六月丁香网| 香蕉av资源在线| 精品久久久久久久末码| 国产成人a区在线观看| 小说图片视频综合网站| 国产精品人妻久久久影院| 午夜免费激情av| 精品人妻一区二区三区麻豆 | 少妇裸体淫交视频免费看高清| a级毛色黄片| 尾随美女入室| eeuss影院久久| 一个人免费在线观看电影| 99热这里只有是精品在线观看| 亚洲国产日韩欧美精品在线观看| www日本黄色视频网| 久久6这里有精品| 免费黄网站久久成人精品| 国产精品国产高清国产av| 搡老岳熟女国产| 一个人免费在线观看电影| 欧美中文日本在线观看视频| 内射极品少妇av片p| 午夜影院日韩av| 黄色视频,在线免费观看| 亚洲人与动物交配视频| 久久精品国产亚洲av涩爱 | 欧美日韩乱码在线| 99热这里只有精品一区| 欧美日韩一区二区视频在线观看视频在线 | 亚洲,欧美,日韩| 亚洲乱码一区二区免费版| 欧美性感艳星| 极品教师在线视频| 亚洲精品一卡2卡三卡4卡5卡| 国产高清激情床上av| 欧美成人一区二区免费高清观看| 欧美一级a爱片免费观看看| 夜夜看夜夜爽夜夜摸| 亚洲自偷自拍三级| 美女高潮的动态| 国产成人一区二区在线| 国产精品久久久久久精品电影| 最后的刺客免费高清国语| 国产成人a区在线观看| 国产高清视频在线播放一区| 淫秽高清视频在线观看| 极品教师在线视频| 欧美区成人在线视频| 一进一出好大好爽视频| 99九九线精品视频在线观看视频| 国产91av在线免费观看| 国产免费一级a男人的天堂| 欧美一区二区国产精品久久精品| 久久草成人影院| 久久久久国产精品人妻aⅴ院| 九九久久精品国产亚洲av麻豆| 插阴视频在线观看视频| 人人妻人人看人人澡| 亚洲欧美日韩无卡精品| 禁无遮挡网站| 国产精品电影一区二区三区| 色噜噜av男人的天堂激情| 日韩高清综合在线| 99久久精品一区二区三区| 国产精品久久久久久亚洲av鲁大| 亚洲七黄色美女视频| 国产91av在线免费观看| 精品人妻偷拍中文字幕| 91久久精品国产一区二区三区| 成人二区视频| av在线蜜桃| 久久精品综合一区二区三区| 成人二区视频| 国产精品一区二区性色av| 狂野欧美激情性xxxx在线观看| 久久精品国产99精品国产亚洲性色| 亚洲av五月六月丁香网| 亚洲精品国产成人久久av| 91精品国产九色| 小说图片视频综合网站| 中文字幕熟女人妻在线| 国产精品永久免费网站| 中文字幕av成人在线电影| 天美传媒精品一区二区| 直男gayav资源| 国产高潮美女av| 听说在线观看完整版免费高清| 特大巨黑吊av在线直播| 老熟妇仑乱视频hdxx| 深爱激情五月婷婷| 久久久久久久久久久丰满| av在线蜜桃| 偷拍熟女少妇极品色| 校园春色视频在线观看| 久久久久久九九精品二区国产| 99九九线精品视频在线观看视频| 观看免费一级毛片| av天堂在线播放| 亚洲国产精品成人综合色| av在线老鸭窝| 成人三级黄色视频| 日本一二三区视频观看| 欧美+日韩+精品| 国产精品久久久久久精品电影| 亚洲欧美中文字幕日韩二区| 色综合色国产| 十八禁网站免费在线| 最新在线观看一区二区三区| 一级黄色大片毛片| 欧美性感艳星| 人妻丰满熟妇av一区二区三区| 最新中文字幕久久久久| 三级毛片av免费| 欧美激情久久久久久爽电影| 久久久精品94久久精品| 老师上课跳d突然被开到最大视频| 一进一出抽搐gif免费好疼| 国产黄色小视频在线观看| 中文字幕免费在线视频6| 欧美日韩一区二区视频在线观看视频在线 | 少妇丰满av| 1024手机看黄色片| 黄色配什么色好看| 男女边吃奶边做爰视频| 日本在线视频免费播放| 国产三级在线视频| 欧美色视频一区免费| 欧美高清成人免费视频www| 亚洲美女视频黄频| 国产视频内射| 亚洲中文字幕一区二区三区有码在线看| or卡值多少钱| 久久人妻av系列| 99国产极品粉嫩在线观看| 亚洲五月天丁香| 赤兔流量卡办理| 久久精品国产亚洲av香蕉五月| 国产真实乱freesex| 亚洲,欧美,日韩| 国产精品免费一区二区三区在线| 色av中文字幕| 人人妻,人人澡人人爽秒播| 成人午夜高清在线视频| 看黄色毛片网站| 草草在线视频免费看| 可以在线观看的亚洲视频| 国内精品一区二区在线观看| a级毛片免费高清观看在线播放| 色av中文字幕| 人人妻人人澡欧美一区二区| 日韩欧美精品免费久久| 看免费成人av毛片| 一级毛片电影观看 | 久久午夜福利片| 日韩欧美在线乱码| 免费不卡的大黄色大毛片视频在线观看 | 在线天堂最新版资源| 91久久精品国产一区二区三区| 色尼玛亚洲综合影院| 波多野结衣高清无吗| 欧美成人a在线观看| 欧美高清成人免费视频www| 一进一出好大好爽视频| 一级av片app| 免费在线观看影片大全网站| 少妇猛男粗大的猛烈进出视频 | 成年女人看的毛片在线观看| 性插视频无遮挡在线免费观看| 99久久精品一区二区三区| 久久精品久久久久久噜噜老黄 | videossex国产| 亚洲人成网站在线观看播放| 精品乱码久久久久久99久播| 亚洲美女搞黄在线观看 | 亚洲久久久久久中文字幕| 国产免费一级a男人的天堂| 亚洲aⅴ乱码一区二区在线播放| 亚洲三级黄色毛片| 免费av毛片视频| 麻豆av噜噜一区二区三区| 国产亚洲精品久久久久久毛片| 偷拍熟女少妇极品色| 天堂网av新在线| 看非洲黑人一级黄片| 可以在线观看的亚洲视频| 国产高清不卡午夜福利| 成人午夜高清在线视频| 亚洲精华国产精华液的使用体验 | 午夜老司机福利剧场| 欧美高清成人免费视频www| 在线免费观看的www视频| 成人鲁丝片一二三区免费| 亚洲一区二区三区色噜噜| 亚洲av第一区精品v没综合| 美女被艹到高潮喷水动态| 日韩精品青青久久久久久| 观看美女的网站| a级一级毛片免费在线观看| 国产成人91sexporn| 少妇人妻精品综合一区二区 | 亚洲中文字幕一区二区三区有码在线看| 18禁在线播放成人免费| 赤兔流量卡办理| av免费在线看不卡| 成人亚洲精品av一区二区| 日日啪夜夜撸| 国产人妻一区二区三区在| 免费av不卡在线播放| 狂野欧美激情性xxxx在线观看| 老师上课跳d突然被开到最大视频| 国产精品无大码| 亚洲欧美日韩高清专用| 人妻制服诱惑在线中文字幕| 国产亚洲91精品色在线| 淫妇啪啪啪对白视频| 精华霜和精华液先用哪个| 秋霞在线观看毛片| 国内少妇人妻偷人精品xxx网站| 精品免费久久久久久久清纯| 啦啦啦韩国在线观看视频| 久久婷婷人人爽人人干人人爱| 99热全是精品| 日韩av不卡免费在线播放| 毛片女人毛片| 亚洲欧美精品自产自拍| 18禁在线无遮挡免费观看视频 | 夜夜爽天天搞| 欧美激情久久久久久爽电影| 免费大片18禁| 精品久久久久久久人妻蜜臀av| 国产精品,欧美在线| 精品日产1卡2卡| 2021天堂中文幕一二区在线观| 久99久视频精品免费| 欧美区成人在线视频| 亚洲国产精品成人综合色| 久久精品国产亚洲av涩爱 | a级毛色黄片| 三级国产精品欧美在线观看| 99国产精品一区二区蜜桃av| 免费看光身美女| 亚洲性夜色夜夜综合| 联通29元200g的流量卡| 久久精品影院6| 国产又黄又爽又无遮挡在线| 99久久中文字幕三级久久日本| 免费看日本二区| 国产精品综合久久久久久久免费| 别揉我奶头~嗯~啊~动态视频| 99视频精品全部免费 在线| 少妇猛男粗大的猛烈进出视频 | 亚洲精品成人久久久久久| 亚洲人与动物交配视频| 波多野结衣高清无吗| 最近在线观看免费完整版| 国产精品久久久久久久电影| 日本一二三区视频观看| 亚洲第一区二区三区不卡| 亚洲精品久久国产高清桃花| 欧美激情久久久久久爽电影| 91在线精品国自产拍蜜月| 国产老妇女一区| 99久久无色码亚洲精品果冻| 国语自产精品视频在线第100页| 日日干狠狠操夜夜爽| 亚洲性久久影院| 欧美一区二区国产精品久久精品| 99久久精品一区二区三区| 国产国拍精品亚洲av在线观看| 午夜福利成人在线免费观看| 久久精品国产自在天天线| 免费看av在线观看网站| 国产午夜精品久久久久久一区二区三区 | 联通29元200g的流量卡| 亚洲精品粉嫩美女一区| 真人做人爱边吃奶动态| 精品久久国产蜜桃| 真人做人爱边吃奶动态| 狂野欧美激情性xxxx在线观看| 天堂av国产一区二区熟女人妻| 亚洲18禁久久av| 最近最新中文字幕大全电影3| 一进一出好大好爽视频| 国产综合懂色| 国产高清视频在线观看网站| 成人一区二区视频在线观看| 色哟哟·www| 日韩一区二区视频免费看| 菩萨蛮人人尽说江南好唐韦庄 | 久久韩国三级中文字幕| 国产精品1区2区在线观看.| 两个人视频免费观看高清| 欧美激情国产日韩精品一区| 嫩草影院新地址| 日韩欧美在线乱码| 最近视频中文字幕2019在线8| 97超碰精品成人国产| 日韩强制内射视频| 欧美人与善性xxx| 色综合站精品国产| 久久久久久久久中文| 久久久久久国产a免费观看| 人妻丰满熟妇av一区二区三区| 天堂动漫精品| 国产av麻豆久久久久久久| 亚洲精品粉嫩美女一区| 国产在线精品亚洲第一网站| 日本精品一区二区三区蜜桃| 国产乱人偷精品视频| 一区福利在线观看| 色尼玛亚洲综合影院| 久久99热这里只有精品18| 99久久成人亚洲精品观看| 男女下面进入的视频免费午夜| 成人亚洲精品av一区二区| 欧美bdsm另类| 午夜福利成人在线免费观看| 色综合亚洲欧美另类图片| 久久久久精品国产欧美久久久| 久久精品国产亚洲av香蕉五月| 亚洲第一电影网av| 99久久中文字幕三级久久日本| 国产综合懂色| 亚洲18禁久久av| 亚洲欧美日韩高清在线视频| 九九久久精品国产亚洲av麻豆| 中出人妻视频一区二区| 午夜福利18| 久久精品国产亚洲网站| 午夜福利18| 欧美成人精品欧美一级黄| 成人三级黄色视频| 中文字幕免费在线视频6| 午夜a级毛片| 99热这里只有精品一区| 久久精品夜夜夜夜夜久久蜜豆| 欧美另类亚洲清纯唯美| 久久久久久伊人网av| 精品一区二区三区av网在线观看| 精品久久国产蜜桃| 亚洲成av人片在线播放无| 色综合站精品国产| 亚洲无线观看免费| 观看美女的网站| 国产成人freesex在线 | 麻豆久久精品国产亚洲av| 熟女人妻精品中文字幕| av天堂在线播放| 麻豆av噜噜一区二区三区| 精品久久久久久久久亚洲| 亚洲av电影不卡..在线观看| 精品乱码久久久久久99久播| 一级毛片aaaaaa免费看小| 淫秽高清视频在线观看| 久久鲁丝午夜福利片| 六月丁香七月| 悠悠久久av| 美女 人体艺术 gogo| 色在线成人网| 91久久精品国产一区二区成人| 人妻制服诱惑在线中文字幕| 午夜老司机福利剧场| 亚洲一区二区三区色噜噜| 最近2019中文字幕mv第一页| 久久国产乱子免费精品| 中文字幕人妻熟人妻熟丝袜美| 亚洲av免费在线观看| 国产精品野战在线观看| 日本免费a在线| 黄色配什么色好看| 日本一二三区视频观看| 日韩av不卡免费在线播放| 99热这里只有是精品在线观看| 97人妻精品一区二区三区麻豆| 久久草成人影院| 国产蜜桃级精品一区二区三区| 干丝袜人妻中文字幕| 午夜福利在线在线| 午夜精品国产一区二区电影 | 九色成人免费人妻av| 国产欧美日韩精品一区二区| a级毛片a级免费在线| 国产精品99久久久久久久久| 一边摸一边抽搐一进一小说| 22中文网久久字幕| 中出人妻视频一区二区| 亚洲一级一片aⅴ在线观看| 看片在线看免费视频| 在线观看美女被高潮喷水网站| 婷婷精品国产亚洲av| 亚洲四区av| 男人舔奶头视频| 久久精品国产99精品国产亚洲性色| 国产精品av视频在线免费观看| 又黄又爽又刺激的免费视频.| 色哟哟·www| 精品少妇黑人巨大在线播放 | av天堂中文字幕网| 成人无遮挡网站| 国产极品精品免费视频能看的| 秋霞在线观看毛片| 午夜a级毛片| 国产精品一区二区免费欧美| 亚洲无线在线观看| 亚洲国产精品合色在线| 最后的刺客免费高清国语| 成人毛片a级毛片在线播放| 国产69精品久久久久777片| 在线观看一区二区三区| 中文字幕久久专区| 嫩草影院新地址| 亚洲人成网站在线播放欧美日韩| 亚洲人与动物交配视频| 亚洲精品成人久久久久久| 最近最新中文字幕大全电影3| 亚洲无线在线观看| 国产白丝娇喘喷水9色精品| 亚洲精品国产av成人精品 | 麻豆久久精品国产亚洲av| 麻豆乱淫一区二区| 丰满的人妻完整版| 日韩欧美在线乱码| 一区二区三区免费毛片| 日韩人妻高清精品专区| 91精品国产九色| 久久久久久久久久黄片| 国产av麻豆久久久久久久| 69人妻影院| 免费观看在线日韩| 美女高潮的动态| 久久亚洲精品不卡| 成人一区二区视频在线观看| 最近中文字幕高清免费大全6| 精品熟女少妇av免费看| 桃色一区二区三区在线观看| 久久久久久伊人网av| 波多野结衣巨乳人妻| 久久6这里有精品| 精品一区二区三区人妻视频| 国产单亲对白刺激| 亚洲精品色激情综合| 亚洲无线观看免费| 久久久久九九精品影院| 亚洲精品一区av在线观看| 久久久久精品国产欧美久久久| 91久久精品国产一区二区三区| 精品福利观看| 国产美女午夜福利| 精品国产三级普通话版| 免费观看精品视频网站| 狠狠狠狠99中文字幕| 夜夜看夜夜爽夜夜摸| 亚洲成a人片在线一区二区| 一进一出好大好爽视频| 国产亚洲精品av在线| 欧美成人a在线观看| 在线观看av片永久免费下载| 亚洲精品乱码久久久v下载方式| 国产精品三级大全| 亚洲色图av天堂| 51国产日韩欧美| 国产伦精品一区二区三区视频9| 一级毛片aaaaaa免费看小| 久久6这里有精品| 国产女主播在线喷水免费视频网站 | 在线观看免费视频日本深夜| 秋霞在线观看毛片| 久久精品国产清高在天天线| 搡老熟女国产l中国老女人| 嫩草影院入口| 久久精品人妻少妇| 亚洲久久久久久中文字幕| 亚洲av.av天堂| 成人美女网站在线观看视频| av在线天堂中文字幕| 插逼视频在线观看| 男人狂女人下面高潮的视频| 五月玫瑰六月丁香| 成人高潮视频无遮挡免费网站| 国产淫片久久久久久久久| 欧美日韩精品成人综合77777| 99精品在免费线老司机午夜| 日韩av在线大香蕉| 嫩草影视91久久| 亚洲天堂国产精品一区在线| 超碰av人人做人人爽久久| 国产极品精品免费视频能看的| 国产精品久久久久久久久免| 国产精品三级大全| 网址你懂的国产日韩在线| 久久精品国产亚洲网站| 在线免费观看的www视频| 亚洲性久久影院| 国产欧美日韩一区二区精品| 欧美日韩精品成人综合77777| 可以在线观看毛片的网站| 亚洲aⅴ乱码一区二区在线播放| 日本免费一区二区三区高清不卡| 免费黄网站久久成人精品| 综合色av麻豆| 熟女电影av网| 极品教师在线视频| 成人特级av手机在线观看| 亚洲人成网站在线播放欧美日韩| 麻豆av噜噜一区二区三区| 国产精品一区二区三区四区久久| 看免费成人av毛片| 中文字幕精品亚洲无线码一区| 亚洲欧美成人综合另类久久久 | 看片在线看免费视频| 亚洲五月天丁香| 午夜影院日韩av| 黄色欧美视频在线观看| 天天躁日日操中文字幕| 亚洲真实伦在线观看| 国产色婷婷99| 亚洲五月天丁香| 午夜影院日韩av| 亚洲欧美日韩高清在线视频| 夜夜爽天天搞| 亚洲精品一区av在线观看| 国内精品久久久久精免费| 六月丁香七月| 亚洲美女黄片视频| 一级毛片aaaaaa免费看小| videossex国产| 久久国产乱子免费精品| 真人做人爱边吃奶动态| 亚洲欧美清纯卡通| 少妇丰满av|