• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    海藻糖-6-磷酸合成酶基因的序列優(yōu)化與表達(dá)研究

    2018-05-07 09:42:19何道文劉小紅張?jiān)侅?/span>
    華北農(nóng)學(xué)報(bào) 2018年2期
    關(guān)鍵詞:張?jiān)?/a>西華南充

    何道文,劉小紅,趙 歡,張?jiān)侅?/p>

    (1.西華師范大學(xué),西南野生動(dòng)植物資源保護(hù)教育部重點(diǎn)實(shí)驗(yàn)室,四川 南充 637002;2.西華師范大學(xué) 生命科學(xué)學(xué)院,四川 南充 637002)

    Drought is an important factors affecting yield and quality in many crops[1-2]. Variety improving can increase drought-resistance ability in some extent,furthermore,it is a most effective and economic method in reducing drought damage[3]. However,even the strongest resistant germplasm materials cannot meet production demand in some arid zone. Additionally,drought resistance is a quantitative trait controlled by multiple genes[4-6],thus,it is difficult by conventional breeding improvement to increase resistance to drought in crops. Many researchers carried out much work in drought-resistance breeding in previous years[7-8],but there is no evident progress. Transgenic technique can break genetic interval between different species,and make one species be transformed into any ideal gene derived from other species. From literature,it was found that some resistant genes to drought includingSODandDREBgenes have successfully been transformed into crops such as rice (OryzasativaL.),maize (ZeamaysL.),etc.[9-10],but the results showed that the transgenic plants and their progeny could not meet agricultural production requirement in drought resistance. Therefore,it is necessary to develop and utilize the genes possessing stronger resistance to drought in agricultural breeding.

    Trehalose is widely distributed in lower organism such as yeast,nematode,algae,simultaneously,and so on. It plays a key role in resistance to water stress for these biology[11-12]. Previous studies demonstrated that some plant seeds,yeast cell,fungal spores and many microorganism could maintain long-term survival when their cells lost partial or total water,and could reactivate even dehydration for decades,the reason is that abundant trehalose was accumulated within their cells[13-14].

    Trehalose-6-phosphate synthase (TPS) gene is a very important gene related to trehalose synthesisinvivo,and according to literature,there were some studies onTPSgene cloning were reported. For example,Kaasen et al[15]cloned twoTPSgenes,namedotsAandotsBinE.coli,in same year,Bell et al[16]isolated twoTPSgenes fromSaccharomycescerevisiae,namedTPS1 andTPS2. Furthermore,someTPSgenes were introduced into plant for improving its tolerance to drought. For instances,TheTPS1 gene from yeast was transformed into tobacco by Holmstr?m et al[17],and the result showed that the transgenic tobacco enhanced water retention in leaf;the twoTPSgenesostAandotsBisolated fromE.coliwere introduced into tobacco by Pilon-Smits et al[18],and the transgenic tobacco showed better biology yield,photosynthetic rate and water retention in leaf than control under drought stress. Furthermore,Zhang et al[19]transformed aTPSgene from yeast into maize byAgrobacterium-mediated transformation method,and some transformed plants displayed resistance to drought stress in some extent.

    Although someTPSgenes derived from other species have already been applied for improving resistance to drought in maize,the resistance to drought could not meet agricultural production demand. Thus,selecting and utilizing an eliteTPSgene resources from other specifies is necessary and significant in maize drought-resistance breeding work. In this study,aTPSgene sequence fromGossypiumarboretumwas redesigned and synthesized based on maize preferred codons,and its expression was also finished in this experiment. This aim is to obtain a gene resource which can be effectively applied in drought-resistance transgenic breeding program in maize.

    1 Materials and Methods

    1.1 Gene,vectors and engineering strains

    In my study,the gene used for structural construction and expression analysis was fromGossypiumarboretum(GenBank:EU750912.1). The vectors involved in this experiment,included a cloning vector pMD19-T (Simple),a prokaryotic expression vector pET30a(+),a plant expression vector pCAMBIA2300. The engineering strains included two competentE.colistrains BL21(DE3) and DH5α,oneAgrobacteriumstrain LBA4404 and one yeast strainPichiapastorisGS115.

    1.2 Gene synthesis and sequence analysis

    For the original gene sequence,it was designed based upon the preference sequence of maize by professional software,and the modified new gene namedT-TPSwas synthesized and cloned into the T cloning site of the plasmid pMD19-T (Simple),and the recombinant plasmid (named pT-vector-TPS) was transformed into JM109 strain (belonging toE.coli) throughout heat shocked method. Next,the positive plasmid pT-vector-TPSwas screened throughout blue-white selection,and theT-TPSgene was sequenced.

    1.3 Primer design,PCR amplification,expression plasmid construction

    TheT-TPSgene within the plasmid pT-vector-TPSwas amplified by polymerase chain reaction (PCR) using two primers. Forward primer:5′-GAATTCATGGC

    AAGCAGGTC-3′ (namedLXH-F-E),and Reverse primer:5′-CGCAAGCTTTCACGCATTTG-3′ (namedLXH-R-H).LXH-F-EandLXH-R-Hpossess endonuclease sitesHind Ⅲ andEcoRⅠat their 5′-end,respectively.

    PCR (polymerase chain reaction) procedure referred the manual of DNA polymerase. After PCR amplification,the products were digested byHind Ⅲ andEcoRⅠtogether,then,one part digested products was assembled into the multiple cloning site of the prokaryotic expression vector named pET30a(+),then the recombinant prokaryotic expression plasmid (named pET-TPS) was transformed into DH5α strain (belonging toE.coli) competent cell,and the positive clone was screened out by blue-white selection. Subsequently,the plasmid within the positive clone was extracted and the products were analyzed by double-enzyme digestion plus 1% agarose gel electrophoresis to identify the recombinant plasmid pET-TPS. The other part digested products of PCR products of pT-vector-TPSwas constructed into a plant eukaryotic expression vector pCAMBIA-2300,the recombinant plasmid (named pCAMBIA-TPS) was transformed into TOP10 competent cell (belonging toE.coli) and identified by plasmid extraction,enzyme digestion and gel electrophoresis experiments. Finally,the right expression plasmid was extracted from positive TOP10 cell and transformed intoAgrobacteriumstrain LBA4404,and single positive clone was selected and identified.

    Additionally,the synthesizedT-TPSgene was amplified by another two primers. Forward primer:LXH-F-E(same as above),and Reverse primer:LXH-R:5′-GCGGCCGCAAGCTTTCACGCATTTG-3′(namedLXH-R-N). PrimerLXH-R-Npossessed endonuclease siteNotⅠ at 5′-end.

    The amplifiedT-TPSgene by the two primers was further constructed intoPichiapastorisexpression vector pPIC9k by the two restriction endonuclease sitesEcoRⅠandNotⅠ,and transformed into TOP10 competent cell belonging toE.coli,subsequently,the positive was verified by plasmid extraction,endonuclease digestion and gel electrophoresis. The expression plasmid harboringT-TPSgene was named pPIC9k-TPS.

    1.4 Prokaryotic expression analysis of T-TPS gene

    To identify whetherT-TPSgene could be expressed expected protein in prokaryotic cell,the constructed expression plasmid pET-TPSwas transformed into the competent cell BL21(DE3) (belonging toE.coli). The positive clone including pET-TPSexpression plasmid was cultured in LB liquid medium. When the threshold value of 0.5 for OD600,IPTG (Isopropyl-β-D-Thiogalactoside) was added to the final concentration 0.2 mmol/L,at 37 ℃ for 3 h,then 1 mL sample was get out with micropipettor and centrifuged,and the deposit was suspended within 80 μL ddH2O and 20 μL 5×Loading Buffer. Afterwards,the 100 μL mixture was treated by boiling water bath for 10 min to disrupt cells,after centrifugation,the supernate was analyzed the target protein by SDS-PAGE.

    1.5 Eukaryotic expression analysis of T-TPS gene

    So as to ascertain whether the constructed gene could be expressed into expected target protein in eukaryotic cell,the pPIC9k-TPSplasmid was digested using endonucleaseSacⅠ as linear treatment,then,the linear plasmid (named pPIC9k-TPS-LIN) was transformed intoPichiapastorisGS115 by eletroporation method,and then cultured by selection on solid medium,to select his+transformants. The selected his+transformants were further used for genomic DNA extraction and PCR amplification by the two primersLXH-F-EandLXH-R-N,and the PCR products was analyzed by agarose gel electrophoresis. Additionally,the selected his+transformants were cultured by gradient screening with G418 (a neomycin analogues) to screen high-copyT-TPSgene clone. The selected clone was further used for induction culture by adding methanol in medium,induction time was designed 0,6,12,18,24,48 and 72 h. After induction culture,total proteins were extracted and separated on SDS-PAGE,and the target protein encoded by theTPSgene was analyzed. The specific procedure was based onPichiapastorisexpression manual.

    2 Results and Analysis

    2.1 Optimized gene and its sequence identification

    The sequence of the designed and reconstructedT-TPSgene was seen in Fig.1. The gene had 2 586 bp in length,and its coding strand including 600 A,669 C,703 G and 614 T. The protein encoded by the gene is up to 861 amino acids in length and 96.97 ku for predicted protein molecular weight(Fig.2),ATG(1-3 nt) and TGA (2 584-2 586 nt) are as its initiation and stop codons,respectively.T-TPSgene was cloned into the vector pMD19-T (Simple) (Fig.3). Further sequence analysis showed that theT-TPSgene sequence agreed with the original designed sequence.

    This DNA sequence is the coding strand of synthesized double-strand DNA.

    Fig.2 The amino acid sequence encoded by T-TPS gene

    2.2 Construction and identification of expression plasmids

    The constructed pET-TPSexpression plasmid can expressT-TPSgene in prokaryotic cell(Fig.4),with 8.0 kb in length. The plasmid pET-TPSwas extracted from positive clone and digested withHind Ⅲ andEcoRⅠ,and the digested fragments were analyzed by 1% agarose gel electrophoresis (Fig.5).

    This plasmid including pMD19-T (Simple)(2 692 bp) and T-TPS gene (2 586 bp) .

    The result demonstrated that the construction of pET-TPSwas no problem.

    The constructed expression plasmid pCAMBIA-TPS(Fig.6) was isolated from positive clone and digested withHind Ⅲ andEcoR Ⅰ,and the digested products were separated on 1% agarose gel electrophoresis. The result was seen in Fig.7,the construction of pCAMBIA-TPSagreed with our expectation. Furthermore,the plasmid pCAMBIA-TPSwas transformed intoAgrobacteriumstrain LBA4404,and the bacterial liquid was directly amplified by the two primersLXH-F-EandLXH-R-Husing PCR technique,and the amplified products were identified by 1% agarose gel electrophoresis,the result was shown in Fig.8. The size of the bands of PCR products were in accord withT-TPSgene.

    This plasmid including pET-30a(+) (5 422 bp) and T-TPS gene (2 586 bp).

    For the constructed plasmid pPIC9k-TPS(Fig.9),after linear treatment withSacⅠ,was transformed intoPichiapastorisGS115. Afterwards,the genomic DNA of positive yeast clone (his+) was extracted and the target gene (T-TPS) was amplified by PCR. The PCR result was shown in Fig.10,and the size of PCR products was accordant with ourT-TPSgene.

    2.3 Prokaryotic expression analysis of T-TPS gene

    After induction expression forT-TPSgene in prokaryotic cell,the total protein was extracted and analyzed by SDS-PAGE,and the result was shown in Fig.11. The predicted molecular weight of the target protein should be 96.97 ku from amino acids sequence ofT-TPSgene. From electrophoresis band on target location in the figure,it was easily found thatT-TPSgene in BL21(DE3) cell was expressed efficiently under induction by IPTG for 3 h.

    2.4 Eukaryotic expression analysis of T-TPS gene

    For the screened out high-copy clone,was further induced to express target protein by adding methanol in different time,afterwards,the total protein was extracted and analyzed by SDS-PAGE,and the result was shown in Fig.12. Based on the electrophoresis band,it was obviously found thatT-TPSgene was efficiently expressed into protein (96.97 ku) inPichiapastorisGS115 cell under induction by adding methanol over 6 h,but for the control(CK),no target protein were found from the electrophoresis photograph. This result suggested that the target geneT-TPScould be induced to express the corresponding protein in eukaryotic cell.

    M.DNA Marker;1.pET-TPS plasmid;2.The products of digested pET-TPS by Hind Ⅲ and EcoRⅠ.

    This plasmid including pCAMBIA-2300 (8 742 bp) and T-TPS gene (2 586 bp).

    M.DNA Marker;1.The products of digested pCAMBIA-TPS by Hind Ⅲ and EcoRⅠ.

    M.DNA Marker;1-2.PCR amplification products.

    The plasmid consisting of vector pPIC9k (9 276 bp) and T-TPS gene (2 586 bp).

    M.DNA Marker;1.PCR amplification products.

    M.Protein Marker;CK.Induction expression protein by IPTG for 3 h in BL21(DE3) cell that was transformed by pET30-30a(+) plasmid as control;1. Induction expression protein by IPTG for 3 h in for BL21(DE3) cell which was transformed by pET-TPSplasmid includingT-TPSgene.

    Fig.11TheSDS-PAGEphotographofinductionexpressionproteininprokaryoticcell

    3 Discussion

    Drought is a major factor influencing plant growth and crop production[20]. Trehalose formation will be induced in many organisms that withstand drought,salt,heat or freeze stress. According to published literature,some "resurrection plants" such as Selaginellalepidophyllawhere it works as osmoprotectant during desiccation stress. It can also remain stable at elevated temperatures and low pH conditions[21]. To be mentioned,the overexpression of trehalose-6-phosphate synthase gene can promote high-level accumulation of trehalose in cell,this can further enhance plant′s resistance to drought[21-22].

    M.Protein Marker;CK.The expressed protein under no inducer methanol inPichiapastorisGS115 cell including linear plasmid pPIC9k-TPS-LIN;6, 12, 18, 24, 48, 72.The expressed protein after induction by methanol for 6, 12, 18, 24, 48 and 72 h inPichiapastorisGS115 cell including linear plasmid pPIC9k-TPS-LIN.

    Fig.12TheSDS-PAGEphotographoftheproteinsextractedfromeukaryoticcell

    In this study,the reconstructedTPSgene spanning 2 586 bp coding fragment based on maize′s preference codons,and encoding 861 amino acids. According to previous studies[19-20,23],it should be a full-length cDNA sequence,thus,it can effectively express trehalose-6-phosphate synthase which catalyze trehalose synthesis in target cell after transformation in maize.

    The newTPSgene was constructed into a prokaryotic expressing plasmid,and its expression products inE.colicell was analyzed by SDS-PAGE,the result showed that it could effectively be expressed target protein. Additionally,the gene was cloned into a eukaryotic expressing vector,its expression products in yeast cell was estimated by SDS-PAGE,the result demonstrated the gene could effectively expressed into target protein in eukaryotic cell. All the experimental results were similar to previous studies[24-26]. Finally,the improved gene was constructed into a plant expression plasmid pCAMBIA-2300,and further transformed intoAgrobacteriumstrain LBA4404. Thus,the obtained gene here can be directly transformed into maize cell byAgrobacterium-mediated transformation methods. These experiment results provided a gene resource in agriculture,which could be applied in maize drought-resistance breeding program.

    參考文獻(xiàn):

    [1] Feng X,Li W,F(xiàn)eng Y,et al. Identification of significant loci for drought resistance and root traits at seedling stage with a set of maize introgression lines [J]. Maydica,2013,58(3):231-237.

    [2] Ghanbari A A,Mousavi S H,Mousapour GorJi A,et al. Combining abilities of grain yield and yield related traits in relation to drought tolerance in temperate maize breeding [J]. Turk J Field Crops,2015,20(2):203-212.

    [3] Lin J,F(xiàn)u F L,Jang W,et al. Cloning and functional analysis of trehalose-6-phosphate synthase gene fromSelaginellapulvinata[J]. Hereditas,2010,32(5):498-504.

    [4] Hao Z F,Li X H,Liu X L,et al. Meta-analysis of constitutive and adaptive QTL for drought tolerance in maize [J]. Euphytica,2010,174(2):165-177.

    [5] Sandhu N,Singh A,Dixit S,et al. Identification and mapping of stable QTL with main and epistasis effect on rice grain yield under upland drought stress [J].Bmc Genetics,2014,15(1):63.

    [6] Li C H,Sun B C,Li Y X,et al. Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations [J]. Bmc Genetics,2016,17(1):894.

    [7] Kanbar A,Shashidhar H E. Participatory selection assisted by DNA markers for enhanced drought resistance and productivity in rice (OryzasativaL.) [J]. Euphytica,2011,178(1):137-150.

    [8] Ghanbari A A,Mousav S H,Mousapour Gorji A,et al. Effects of water stress on leaves and seeds of bean (PhaseolusvulgarisL.) [J]. Turk J Field Crops,2013,18(1):73-77.

    [9] Negi N P,Shrivastava D C,Sharma V A. Overexpression of CuZnSOD fromArachishypogaeaalleviates salinity and drought stress in tobacco [J]. Plant Cell Reports,2015,34(7):1109-1126.

    [10] Jia X X,Li Y T,Qi E F,et al. Overexpression of theArabidopsisDREB1Agene enhances potato drought-resistance [J]. Russian Journal of Plant Physiology,2016,63(4):523-531.

    [11] Jun S S,Yang J Y,Choi H Y,et al. Altered physiology in trehalose-producing transgenic tobacco plants:Enhanced tolerance to drought and salinity stresses [J]. Journal of Plant Biology,2005,48(4):456-466.

    [12] Akram N A,Noreen S,Noreen T,et al. Exogenous application of trehalose alters growth,physiology and nutrient composition in radish (RaphanussativusL.) plants under water-deficit conditions [J]. Brazilian Journal of Botany,2015,38(3):431-439.

    [13] Crowe J H,Hoekstra F A,Crowe L M. Anhydrobiosis [J]. Ann Rev Physiol,1992,54:579-599.

    [14] Pramanik M H,Imai R. Functional identification of a trehalose 6-phosphate phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice [J]. Plant Molecular Biology,2005,58(6):751-762.

    [15] Kaasen I,F(xiàn)alkenberg P,Styrvold O B,et al. Molecular cloning and physical mapping of the otsBA genes,which encode the osmoregulatory trehalose pathway ofEscherichiacoli:evidence that transcription is activated by katF (AppR) [J]. J Bacteriol,1992,174(10):889-898.

    [16] Bell W,Klaassen P,Ohnacker M,et al. Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1,a regulator of carbon catabolit einactivation [J]. Eur J Biochem,1992,209(3):951-959.

    [17] Holmstr?m K O,M?ntyl?E,Welin B,et al. Drought tolerance in tobacco [J]. Nature,1996,379:683-684.

    [18] Pilon-Smits E A H,Terry N,Sears T,et al. Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress [J]. J Plant Physiol,1998,152(4-5):525-523.

    [19] Zhang Y Q,Dong C L,Yang L L,et al. Study on transformation of trehalose synthase geneTPSto maize and their drought resistance [J].Journal of Shanxi Agricultural Sciences,2016:44(1):1-4,39.

    [20] Kosmas M A,Argyrokastritis A,Loukas M G,et al. Isolation and characterization of drought-related trehalose 6-phosphate-synthase gene from cultivated cotton (GossypiumhirsutumL.) [J]. Planta,2006,223(2):329-339.

    [21] Wingler A. The function of trehalose biosynthesis in plants[J]. Phytochemistry,2002,60(5):437-440.

    [22] An M Z,Tang Y Q,Mitsumasu K,et al. Enhanced thermotolerance for ethanol fermentation ofSaccharomycescerevisiaestrain by overexpression of the gene coding for trehalose-6-phosphate synthase [J]. Biotechnology Letters,2011,33(7):1367-1374.

    [23] Mu M,Lu X K,Wang J J,et al. Erratum to:genome-wide Identification and analysis of the stress-resistance function of theTPS(Trehalose-6-Phosphate Synthase)gene family in cotton [J].Bmc Genetics,2016,17(1):1-1.

    [24] Wang G L,Zhao G,F(xiàn)eng Y B,et al. Cloning and comparative studies of seaweed trehalose-6-Phosphate synthase genes [J]. Marine Drugs,2010,8(7):2065-2079.

    [26] Yang H L,Liu Y J,Wang C L,et al. Molecular evolution of trehalose-6-phosphate synthase(TPS)gene family inPopulus,Arabidopsisand rice[J].PLoS One,2012,7(8):e42438.

    猜你喜歡
    張?jiān)?/a>西華南充
    西華大學(xué)成果展示
    包裝工程(2024年8期)2024-04-23 03:59:24
    西華大學(xué)成果展示
    包裝工程(2023年4期)2023-03-07 01:13:24
    四川省南充蠶具研究有限公司
    子路、曾皙、冉有、公西華侍坐
    文苑(2020年5期)2020-06-16 03:18:36
    堅(jiān)持法德并舉 助力治蜀興川
    體諒失禮下人
    西華師范大學(xué)學(xué)報(bào)(自然科學(xué)版)
    四川南充上智農(nóng)業(yè)機(jī)械設(shè)備有限公司
    南充市委書(shū)記為什么夸玉皇觀村
    張?jiān)佂裱詣窨軠?zhǔn)
    亚洲国产精品一区二区三区在线| 日韩电影二区| 日韩免费高清中文字幕av| 国产av国产精品国产| 成人18禁高潮啪啪吃奶动态图 | 简卡轻食公司| 最新中文字幕久久久久| 亚洲伊人久久精品综合| 色94色欧美一区二区| 色网站视频免费| 80岁老熟妇乱子伦牲交| 久久久久久久久久久丰满| 国产乱人偷精品视频| 国产亚洲av片在线观看秒播厂| 新久久久久国产一级毛片| 国产高清三级在线| 美女中出高潮动态图| a级一级毛片免费在线观看| 久久av网站| www.av在线官网国产| 国产在线视频一区二区| 久久久久久久久久成人| 国产欧美亚洲国产| 国产在线视频一区二区| av有码第一页| 99国产精品免费福利视频| 久久久欧美国产精品| 亚洲欧美成人精品一区二区| 亚洲av成人精品一区久久| 在线观看一区二区三区激情| 欧美一级a爱片免费观看看| 又爽又黄a免费视频| 精品一区二区三卡| 青春草视频在线免费观看| 少妇被粗大的猛进出69影院 | 国产毛片在线视频| 久久久久久久久久久免费av| 亚洲经典国产精华液单| 男的添女的下面高潮视频| 婷婷色麻豆天堂久久| 深夜a级毛片| 日韩不卡一区二区三区视频在线| 一区二区av电影网| av免费在线看不卡| 午夜激情久久久久久久| 多毛熟女@视频| 亚洲精品国产色婷婷电影| 欧美日韩视频高清一区二区三区二| 亚洲综合精品二区| 免费在线观看成人毛片| 三级国产精品片| 亚洲图色成人| 青春草视频在线免费观看| 国产精品99久久久久久久久| 高清视频免费观看一区二区| 伦精品一区二区三区| 国产在线免费精品| 伦理电影大哥的女人| 高清午夜精品一区二区三区| 欧美区成人在线视频| 久久免费观看电影| 亚洲精品,欧美精品| 日韩中字成人| 桃花免费在线播放| 久久久国产一区二区| 亚洲av电影在线观看一区二区三区| 黄色毛片三级朝国网站 | 人妻制服诱惑在线中文字幕| 欧美最新免费一区二区三区| 亚洲欧美一区二区三区黑人 | 最新中文字幕久久久久| 丰满人妻一区二区三区视频av| 精品久久久久久久久av| 黑人猛操日本美女一级片| 亚洲精品久久午夜乱码| av国产久精品久网站免费入址| 乱系列少妇在线播放| 啦啦啦啦在线视频资源| 精品99又大又爽又粗少妇毛片| 国产高清三级在线| kizo精华| 看十八女毛片水多多多| 伊人亚洲综合成人网| 黄片无遮挡物在线观看| 最新中文字幕久久久久| 久久久久视频综合| 国产亚洲最大av| 91久久精品国产一区二区成人| 婷婷色综合www| 日日摸夜夜添夜夜爱| 一本久久精品| av专区在线播放| 日韩视频在线欧美| 久久毛片免费看一区二区三区| 18+在线观看网站| 亚洲中文av在线| 美女脱内裤让男人舔精品视频| 制服丝袜香蕉在线| 成人毛片a级毛片在线播放| 美女主播在线视频| 色婷婷av一区二区三区视频| 亚洲欧洲日产国产| 综合色丁香网| 人妻人人澡人人爽人人| 51国产日韩欧美| 国产乱来视频区| 纯流量卡能插随身wifi吗| 精品亚洲成国产av| 熟女av电影| 黄色日韩在线| 日韩av在线免费看完整版不卡| 国产精品秋霞免费鲁丝片| 男女边吃奶边做爰视频| 卡戴珊不雅视频在线播放| 国模一区二区三区四区视频| 乱系列少妇在线播放| 纯流量卡能插随身wifi吗| 欧美高清成人免费视频www| 国产精品久久久久久久电影| av在线观看视频网站免费| 日日撸夜夜添| av天堂久久9| 高清欧美精品videossex| 青春草国产在线视频| 又黄又爽又刺激的免费视频.| 乱码一卡2卡4卡精品| 高清视频免费观看一区二区| 亚洲第一区二区三区不卡| 久久久午夜欧美精品| 各种免费的搞黄视频| 久久久久人妻精品一区果冻| 精品少妇内射三级| 亚洲欧美一区二区三区国产| 伊人久久国产一区二区| 国产av一区二区精品久久| 国产男女超爽视频在线观看| 日韩欧美 国产精品| 成人国产av品久久久| 久久国内精品自在自线图片| 国产欧美日韩一区二区三区在线 | 大又大粗又爽又黄少妇毛片口| 性高湖久久久久久久久免费观看| 亚洲精品亚洲一区二区| av福利片在线| 国产精品欧美亚洲77777| 久久午夜福利片| 秋霞在线观看毛片| 乱人伦中国视频| 国产精品人妻久久久久久| 永久免费av网站大全| 国产一区二区在线观看日韩| 久久久精品94久久精品| av在线播放精品| 欧美精品亚洲一区二区| 麻豆乱淫一区二区| 在线观看人妻少妇| 尾随美女入室| 精品国产露脸久久av麻豆| 精品久久久久久久久亚洲| 2018国产大陆天天弄谢| 成人影院久久| 精品国产国语对白av| 秋霞在线观看毛片| 中文字幕久久专区| 欧美最新免费一区二区三区| 国产亚洲5aaaaa淫片| 777米奇影视久久| 嫩草影院新地址| 欧美xxxx性猛交bbbb| 又黄又爽又刺激的免费视频.| 国产成人freesex在线| 纵有疾风起免费观看全集完整版| 亚洲欧洲国产日韩| 久久久精品94久久精品| 日韩欧美精品免费久久| 国产精品一二三区在线看| 久久国产精品男人的天堂亚洲 | 婷婷色综合www| 91精品国产九色| 久久婷婷青草| 精品国产一区二区三区久久久樱花| 国产亚洲5aaaaa淫片| 国产精品三级大全| 一区二区三区乱码不卡18| 欧美丝袜亚洲另类| 久久精品熟女亚洲av麻豆精品| 老司机影院毛片| 日本与韩国留学比较| 国产精品三级大全| 国产老妇伦熟女老妇高清| 自线自在国产av| 免费看光身美女| 2022亚洲国产成人精品| 免费av中文字幕在线| 国产精品女同一区二区软件| 男人爽女人下面视频在线观看| 国产色爽女视频免费观看| 欧美日韩综合久久久久久| 国产熟女午夜一区二区三区 | 伦理电影大哥的女人| 一区二区三区精品91| √禁漫天堂资源中文www| 成年人午夜在线观看视频| 国产淫语在线视频| 久久国产精品大桥未久av | 国产精品国产三级国产专区5o| 亚洲国产毛片av蜜桃av| 夫妻性生交免费视频一级片| 如日韩欧美国产精品一区二区三区 | 激情五月婷婷亚洲| 五月天丁香电影| 丝袜喷水一区| 欧美成人精品欧美一级黄| 国产视频内射| 水蜜桃什么品种好| 中文字幕亚洲精品专区| 欧美精品高潮呻吟av久久| 亚洲精品一二三| 国产黄片美女视频| 亚洲精品日韩av片在线观看| 一级毛片 在线播放| 国产高清国产精品国产三级| 插阴视频在线观看视频| 99热全是精品| 蜜桃久久精品国产亚洲av| 亚洲欧美成人精品一区二区| 欧美激情极品国产一区二区三区 | 偷拍熟女少妇极品色| 一区二区三区免费毛片| 欧美日韩亚洲高清精品| 亚洲欧美成人精品一区二区| 久久免费观看电影| 国产国拍精品亚洲av在线观看| 久久韩国三级中文字幕| 男人狂女人下面高潮的视频| 中国美白少妇内射xxxbb| 欧美亚洲 丝袜 人妻 在线| 久久ye,这里只有精品| 亚洲精品第二区| 国产av一区二区精品久久| 国产免费一级a男人的天堂| av免费在线看不卡| 卡戴珊不雅视频在线播放| 久热久热在线精品观看| 亚洲在久久综合| 国产永久视频网站| 国产男人的电影天堂91| 国产在视频线精品| 伊人久久国产一区二区| 九九在线视频观看精品| www.色视频.com| 嫩草影院新地址| 亚洲国产成人一精品久久久| 国产成人精品一,二区| 国产有黄有色有爽视频| 搡女人真爽免费视频火全软件| 国产日韩一区二区三区精品不卡 | 在线观看国产h片| 一级黄片播放器| 两个人免费观看高清视频 | 国产淫片久久久久久久久| 又黄又爽又刺激的免费视频.| 熟女电影av网| 九九久久精品国产亚洲av麻豆| 18禁在线无遮挡免费观看视频| 高清在线视频一区二区三区| 亚洲中文av在线| 国产黄色免费在线视频| 国产精品一区二区在线不卡| 国产精品国产三级国产专区5o| 国产毛片在线视频| 欧美日韩视频精品一区| 欧美性感艳星| 国产69精品久久久久777片| 欧美日本中文国产一区发布| 三级国产精品欧美在线观看| 高清av免费在线| 日韩 亚洲 欧美在线| 国产午夜精品一二区理论片| 久久久午夜欧美精品| 丰满迷人的少妇在线观看| 亚洲精品456在线播放app| 精品一品国产午夜福利视频| 日本免费在线观看一区| 日韩中文字幕视频在线看片| 最后的刺客免费高清国语| 亚洲av在线观看美女高潮| 日韩成人伦理影院| 亚洲一区二区三区欧美精品| 免费av中文字幕在线| 我要看黄色一级片免费的| 高清在线视频一区二区三区| 看十八女毛片水多多多| 日韩制服骚丝袜av| 人妻人人澡人人爽人人| 久久久国产欧美日韩av| 黄色日韩在线| 国产一区二区在线观看av| 免费观看性生交大片5| 91精品国产九色| 国产在线视频一区二区| 亚洲真实伦在线观看| 在线观看国产h片| 免费在线观看成人毛片| 人妻一区二区av| 久久国产乱子免费精品| 偷拍熟女少妇极品色| 国产爽快片一区二区三区| 久久女婷五月综合色啪小说| 色吧在线观看| 五月天丁香电影| 99久久精品一区二区三区| 一级,二级,三级黄色视频| 成人漫画全彩无遮挡| 美女视频免费永久观看网站| 亚洲国产日韩一区二区| av福利片在线| 一个人看视频在线观看www免费| 国产精品无大码| 免费观看无遮挡的男女| 中文字幕制服av| 亚洲中文av在线| 久久热精品热| 18禁裸乳无遮挡动漫免费视频| 国产精品久久久久久av不卡| 国产成人aa在线观看| 在线播放无遮挡| 一区在线观看完整版| 美女福利国产在线| 十八禁高潮呻吟视频 | 亚洲,一卡二卡三卡| 极品少妇高潮喷水抽搐| 中文天堂在线官网| 偷拍熟女少妇极品色| 婷婷色av中文字幕| 欧美人与善性xxx| 五月伊人婷婷丁香| 亚洲综合精品二区| 两个人免费观看高清视频 | 精品一区二区三区视频在线| 国产精品国产av在线观看| 婷婷色麻豆天堂久久| 免费观看性生交大片5| 91成人精品电影| 永久免费av网站大全| 成人影院久久| 国产精品久久久久久精品古装| 亚洲av二区三区四区| 啦啦啦在线观看免费高清www| 麻豆乱淫一区二区| 日韩,欧美,国产一区二区三区| 国产伦精品一区二区三区视频9| 男人和女人高潮做爰伦理| 久热这里只有精品99| 欧美精品一区二区免费开放| 成人漫画全彩无遮挡| 亚洲精品国产av蜜桃| 免费观看在线日韩| 高清av免费在线| 亚洲成人一二三区av| 色94色欧美一区二区| 少妇的逼好多水| 午夜激情福利司机影院| 看免费成人av毛片| 中文天堂在线官网| 精品少妇久久久久久888优播| 中文字幕制服av| av.在线天堂| 国产视频首页在线观看| 蜜桃久久精品国产亚洲av| av.在线天堂| 美女xxoo啪啪120秒动态图| 乱人伦中国视频| av网站免费在线观看视频| 亚洲情色 制服丝袜| 又爽又黄a免费视频| 国产女主播在线喷水免费视频网站| 亚洲国产精品一区三区| 狠狠精品人妻久久久久久综合| 中文字幕人妻丝袜制服| 桃花免费在线播放| 韩国av在线不卡| 精品酒店卫生间| xxx大片免费视频| 妹子高潮喷水视频| 色网站视频免费| 偷拍熟女少妇极品色| 亚洲精品一区蜜桃| 男女啪啪激烈高潮av片| 少妇猛男粗大的猛烈进出视频| 日韩视频在线欧美| 成人黄色视频免费在线看| 2021少妇久久久久久久久久久| 一个人看视频在线观看www免费| 亚州av有码| 妹子高潮喷水视频| 看十八女毛片水多多多| 国产精品欧美亚洲77777| 女的被弄到高潮叫床怎么办| 精品国产露脸久久av麻豆| 青春草亚洲视频在线观看| 在线观看人妻少妇| 深夜a级毛片| 亚洲国产精品成人久久小说| 看免费成人av毛片| 午夜激情久久久久久久| 天堂俺去俺来也www色官网| 国产高清不卡午夜福利| 一级毛片电影观看| 自线自在国产av| 亚洲一区二区三区欧美精品| 男男h啪啪无遮挡| 国产高清三级在线| 午夜日本视频在线| 热re99久久国产66热| 观看免费一级毛片| 免费高清在线观看视频在线观看| 精品少妇内射三级| 一个人免费看片子| 免费人妻精品一区二区三区视频| 日韩免费高清中文字幕av| 欧美激情国产日韩精品一区| 日日撸夜夜添| 色视频www国产| 九九在线视频观看精品| 成人18禁高潮啪啪吃奶动态图 | 啦啦啦视频在线资源免费观看| 日韩电影二区| 少妇人妻 视频| 秋霞在线观看毛片| 波野结衣二区三区在线| 国产国拍精品亚洲av在线观看| 在线观看www视频免费| 午夜福利在线观看免费完整高清在| 久久综合国产亚洲精品| 免费少妇av软件| 欧美bdsm另类| 国产成人aa在线观看| 99视频精品全部免费 在线| 观看美女的网站| 国产精品麻豆人妻色哟哟久久| 欧美日韩视频精品一区| 在现免费观看毛片| 岛国毛片在线播放| 亚州av有码| 久久精品国产亚洲网站| 高清黄色对白视频在线免费看 | 秋霞伦理黄片| 久久久久精品久久久久真实原创| 国产 精品1| 国产在线免费精品| 精品一区在线观看国产| 亚洲精品一区蜜桃| 久久99精品国语久久久| 午夜老司机福利剧场| 国产伦理片在线播放av一区| 最近最新中文字幕免费大全7| 日韩一区二区三区影片| 免费观看在线日韩| 日韩成人av中文字幕在线观看| 国产成人精品一,二区| 日韩中字成人| 少妇熟女欧美另类| 免费观看无遮挡的男女| 人妻 亚洲 视频| 久久久久久久久大av| 妹子高潮喷水视频| 精品国产一区二区三区久久久樱花| 搡老乐熟女国产| 午夜影院在线不卡| 国产女主播在线喷水免费视频网站| 日韩成人av中文字幕在线观看| 日本91视频免费播放| 22中文网久久字幕| 久久国产亚洲av麻豆专区| 麻豆成人av视频| av一本久久久久| 免费人成在线观看视频色| 免费久久久久久久精品成人欧美视频 | 18+在线观看网站| 国产男人的电影天堂91| 精品人妻一区二区三区麻豆| 国产一区二区在线观看日韩| 啦啦啦啦在线视频资源| 亚洲欧美精品自产自拍| 99久久综合免费| 精品一品国产午夜福利视频| 十分钟在线观看高清视频www | 91精品一卡2卡3卡4卡| 亚洲伊人久久精品综合| 亚洲av不卡在线观看| 欧美日韩在线观看h| 韩国av在线不卡| 在线观看av片永久免费下载| 热99国产精品久久久久久7| 亚洲av二区三区四区| 美女xxoo啪啪120秒动态图| 另类亚洲欧美激情| 97在线视频观看| 欧美变态另类bdsm刘玥| 国产男女内射视频| 国产免费又黄又爽又色| 丰满人妻一区二区三区视频av| 亚洲精品乱码久久久v下载方式| 日本色播在线视频| 另类精品久久| 欧美亚洲 丝袜 人妻 在线| 人妻少妇偷人精品九色| 91久久精品电影网| 国产亚洲精品久久久com| 免费av不卡在线播放| 免费观看无遮挡的男女| 伦精品一区二区三区| 亚洲av电影在线观看一区二区三区| 久久精品熟女亚洲av麻豆精品| 一级毛片 在线播放| 伊人久久国产一区二区| 日本wwww免费看| 美女视频免费永久观看网站| 亚洲电影在线观看av| 99九九在线精品视频 | 日本av手机在线免费观看| 在线播放无遮挡| 成人特级av手机在线观看| 夜夜爽夜夜爽视频| 黑人高潮一二区| 国产日韩欧美亚洲二区| 成人国产麻豆网| 中文字幕制服av| 3wmmmm亚洲av在线观看| 如何舔出高潮| 日韩中字成人| 亚洲精品国产av蜜桃| 最黄视频免费看| 极品教师在线视频| 观看av在线不卡| 嘟嘟电影网在线观看| 哪个播放器可以免费观看大片| 一级av片app| 国产真实伦视频高清在线观看| 久久精品国产亚洲网站| 男人舔奶头视频| 欧美xxxx性猛交bbbb| 亚洲精品乱码久久久久久按摩| 水蜜桃什么品种好| 久久久亚洲精品成人影院| 国产片特级美女逼逼视频| 高清黄色对白视频在线免费看 | av福利片在线观看| 久久人人爽av亚洲精品天堂| 人妻一区二区av| 中国国产av一级| 国产毛片在线视频| 91久久精品国产一区二区三区| a级一级毛片免费在线观看| 高清av免费在线| 日韩精品免费视频一区二区三区 | 我要看黄色一级片免费的| 精品熟女少妇av免费看| av不卡在线播放| 午夜福利在线观看免费完整高清在| 春色校园在线视频观看| 最近中文字幕2019免费版| 日韩免费高清中文字幕av| 免费观看av网站的网址| 大香蕉97超碰在线| 欧美三级亚洲精品| 高清欧美精品videossex| 亚洲欧美精品自产自拍| 免费观看的影片在线观看| 黑丝袜美女国产一区| 成人无遮挡网站| 成年人免费黄色播放视频 | 中文字幕免费在线视频6| 一区二区av电影网| 伊人久久国产一区二区| 桃花免费在线播放| 欧美97在线视频| 国国产精品蜜臀av免费| 91精品一卡2卡3卡4卡| 成人漫画全彩无遮挡| 久久亚洲国产成人精品v| 亚洲av电影在线观看一区二区三区| 久久久欧美国产精品| 青春草亚洲视频在线观看| 久久av网站| 91精品国产国语对白视频| 黄色日韩在线| 精品久久久精品久久久| 国产成人精品久久久久久| 春色校园在线视频观看| 天堂中文最新版在线下载| 老司机影院成人| 欧美精品人与动牲交sv欧美| 97精品久久久久久久久久精品| 一级,二级,三级黄色视频| 国产日韩欧美视频二区| 精华霜和精华液先用哪个| 丝瓜视频免费看黄片| 色吧在线观看| 日韩一区二区视频免费看| 偷拍熟女少妇极品色| 人妻制服诱惑在线中文字幕| 啦啦啦中文免费视频观看日本| 色94色欧美一区二区| 国产精品久久久久成人av| 久久人妻熟女aⅴ| 狂野欧美白嫩少妇大欣赏| 亚洲精品,欧美精品| 亚洲国产欧美日韩在线播放 | 99热这里只有是精品在线观看| 午夜av观看不卡| 熟妇人妻不卡中文字幕| 日韩大片免费观看网站| 80岁老熟妇乱子伦牲交|